
D~DAT flCUMETATIN PAE jForm Approved

to average 1 hour Per rePore. IIncUding te time1 for reviewing Instructinst searching existing data source. gathering and mnairsainmng the data
a regarding this burden eatireate or anty other aped of tis collecion of inormation. inckiding auggestina for reducing ti burden. to Washington
eports, 1215 JeffersonDavis Highway, Sute 1204. "iinon, VA 222024M02, and to the Office of inforntation and Regujlatory Affar, Office of

A D-A 233 625 12. REPORT DATE I3. REPORT TYP'E AND DATES COVERED

I Final: 11 Feb 1991 to 01 Mar 1993
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ada Compiler Validation Summary Report: Hewlett Packard, HP 9000 series 300
Ada Compiler, Version 5.35, HP 9000 Series 300 Model 370 (Host & Target),
901 022W1 .11049

6. AUTHOR(S)

Wright- Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AFV-*VSR-399-01 91
Wright-Patterson AFB
Dayton, OH 45433
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
'Iashington, D.C. 20301-3081
1i. SUPPLEMENTARY NOTES

1 2a. DISTRIBUTION/AVAILABILITY STATEM ENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Hewlett Packard, HP 9000 Series 300 Ada Compiler, Version 5.35, Wright- Patterson AFB, OH, HP 9000 300 Model 370
(Host & Target), ACVC 1. 11

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. ___________

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF ABSTRACT

UNCLASSIFIED UNCLASSIFED IUNCLASSIFIED
NSN 7540-01-280-550 c j(,~~ ,11 Standard Form 298, (Rev. 2-89)

e7 9 q5 ~ U 0 Prescribed by ANSI Std. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 22 October 1990.

Compiler Name and Version: HP 9000 Series 300 Ada Compiler
Version 5.35

Host Computer System: HP 9000 Series 300 Model 370
HP-UX, Version A.07.00

Target Computer System: HP 9000 Series 300 Model 370
HP-UX, Version A.07.00

Customer Agreement Number: 90-08-14-HPC

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
901022WI.11049 is awarded to Hewlett Packard. This certificate expires on
1 March 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

A -Validatioh Organization
Director, Computer & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Program Office
Dr. John Solomond, Director
Department of Defense ,
Washington DC 20301 ..

• • m m • m mI

AVF Control Number: AVF-VSR-399-0191
11 February 1991

90-08-14-HPC

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 901022W1.11049
Hewlett Packard

HP 9000 Series 300 Ada Compiler, Version 5.35
HP 9000 Series 300 Model 370 => HP 9000 Series 300 Model 370

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

DECLARATION OF CONFORMANCE

Compiler Implementor: Hewlett Packard Company, California Language Lab
Ada Validation Facility: ASD/SCEL, Wright Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.11.

Base Configuration

Base Compiler Name: HP 9000 Series 300 Ada Compiler, Version 5.35.
Host Architecture ISA: HP 9000 Series 300 Model 370
Host OS and Version: HP-UX Versron A 07.00
Target Architecture ISA: HP 9000 Series 300 Model 370
Target OS and Version: HP-UX, Version A.07.00

Implementer's Declaration

I, the undersigned, representing Hewlett Packard Company, have implemented no deliberate
extentions to the Ada Language Standard ANSI/MIL-STD-1815A in the compilers listed in this
declaration. I declare that Hewlett Packard Company is owner of record of the Ada language
compilers listed above and, as such, is responsible for maintaining said compilers in conformance to
ANSI/MIL-STD-1815A. All certificates and registration for the Ada language compiler listed in this
declaration shall be made only in the owner's corporate name.

,"______" __& _______"___-__-_ Date:______________
Hewlett Packard Company
David G-aham
Ada R&D Section Manager

Owner's Declaration

I, the undersigned, representing Hewlett Packard Company, take full responsibility for
implementation and maintenance of the Ada compiler listed above, and agree to the public
disclosure of the final Validation Summary Report. I further agree to continue to comply with the
Ada trademark policy, as defined by the Ada Joint Program Office. I declare that all of the Ada
language compilers listed, and their host/target performance are in compliance with the Ada
Language Standard ANSI/MIL-STD-1815A.

f. / .

, ;/('-, / -' Date:___ __ ___ __
Hewlett Paaard Company
David Graham
Ada R&D Section Manager

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES1-2
1.3 ACVC TEST CLASSES1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90) against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
ReporL (VSR) gives ar account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90J. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of tue ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class P
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and tUG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of at Ade compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 02 September 1990.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
B83022B B83022H B83025B B83025D B83026B B85001L
C83026A C83041A C97116A C98003B BA2O11A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
BD1BO2B BDIB06A ADlBO8A BD2AO2A CD2A21E CD2A23E
CD2A32A CD2A41A CD2A41E CD2A87A CD2BI5C BD3OO6A
CD4022A CD4022D CD4024B CD4024C CD4024D CD4031A
CD4051D CD5111A CD7004C ED7005D CD7005E AD7006A
CD7006E AD7201A AD7201E CD7204B BD8002A BD8004C
CD900SA CD9005B CDA2O1E CE2107I CE2119B CE2205B
CE2405A CE3111C CE3118A CE3411B CE3412B CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55B07A B55B09C B86001W C86006C
CD7101F

C35702A, C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT.

C35713D and B8600lZ check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORTFLOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAXMANTISSA of 47 or
greater.

C45536A, C46031B, C46033B, and C46034B contain 'SMALL representation
clauses which are not powers of two or ten.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types; for this
implementation, MACHINEOVERFLOWS is TRUE.

C86001F recompiles package SYSTEM, making package TEXT 10, and hence
package REPORT, obsolete. For this implementation, the package TEXT I0
is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

LA3004A..B (2 tests), EA3004C..D (2 tests), and CA3004E..F (2 tests)
check for pragma INLINE for procedures and functions.

CD1O09C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten type'small. (See secLion 2.3)

2-2

IMPLEMENTATION DEPENDENCIES

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions.

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method.

Test File Operation Mode File Access Method

CE2102E CREATE OUT FILE SEQUENTIAL 10
CE2102F CREATE INOUT FILE DIRECT 10 -
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE2102W RESET OUT FILE DIRECT 10 -
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE TEXT_10
CE31021 CREATE OUT FILE TEXT_10
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUT FILE TEXTI0

The tests listed in the following table are not applicable because the
given file operations are not supported for the given combination of
mode and file access method.

Test File Operation Mode File Access Method

CE2105A CREATE IN FILE SEQUENTIAL 10
CE2105B CREATE IN FILE DIRECT 10
CE3109A CREATE IN-FILE TEXT_10

EE2401D, EE240IG, and CE2401H use instantiations of DIRECT 10 with
unconstrained zrray types and record types; this implementation raises
USEERROR on the attempt to create a file.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT-IO. This implementation does not
restrict file capacity.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET PAGE LENGTH specifies a value that is inappropriate for the external
file. TFis implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT'LAST is greater than 150000 making the checking of this objective
impractical.

2-3

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 28 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B23004A B24007A B24009A B28003A B32202A B32202B
B32202C B33001A B36307A B37004A B45102A B49003A
B49005A B61012A B62001B B74304B B74401F B74401R
B91004A B95004A B95032A B95069A B95069B BA1101B
BC2001D BC3009A BC3009C

CD2A53A was graded inapplicable by Evaluation Modification as directed by
the AVO. The test contains a specification of a power-of-10 value as small
for a fixed-point type. The AVO ruled that, under ACVC 1.11, support of
decimal smalls may be omitted.

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Larry N. McMahan
California Language Lab
19447 Pruneridge Avenue
Cupertino CA 95014
(408) 447-7234

For a point of contact for sales information about this Ada implementation
system, see:

Larry N. McMahan
California Language Lab
19447 Pruneriage Avenue
Cupertino CA 95014
(408) 447-7234

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

3-1

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

Total Number of Applicable Tests 3814
Total Number of Withdrawn Tests 74
Processed Inapplicable Tests 81
Non-Processed I/0 Tests 0
Non-Processed Floating-Point

Precision Tests 201

Total Number of Inapplicable Tests 282

Total Number of Tests for ACVC 1.11 4170

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 282 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 81 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

3-2

PROCESSING INFORMATION

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Switch Effect

-L Produces an output listing.

-P 66 Sets the output page length to 66 lines.

-e 999 Sets the maximum number of errors to 999.

-W c, -SHOW=NONE Suppresses printing of headers and of
summary which would otherwise appear at
the end of the compilation listing.

-u Places information for generic instantiations
into a separate symbol table.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$BIGIDI (l..V-1 => 'A', V => '1')

$BIGID2 (I..V-l => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' &
(1..V-I-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' &
(1..V-I-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRINGi '"' & (I..V/2 => 'A') & 'll

$BIGSTRING2 '"' & (1..V-I-V/2 => 'A') & 'I' & 'll

$BLANKS (1..V-20 => '

$MAXLENINTBASEDLITERAL

"2:" & (1..V-5 => '0') & "11:"

$MAXLENREALBASED LITERAL
"16:" & (l..V-7 => '0') & "F.E:"

$MAXSTRING LITERAL '"' & (l..V-2 => 'A') & '"'

A-i

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$MAXINLEN 255

$ACCSIZE 32

$ALIGNMENT 2

$COUNTLAST 2147483647

$DEFAULTMEMSIZE 2147483647

$DEFAULTSTORUNIT 8

$DEFAULTSYSNAME HP9000_300

$DELTADOC 2#1.O#e-31

SENTRYADDRESS TOADDRESS(16#40#)

$ENTRYADDRESS1 TOADDRESS(16#80#)

$ENTRYADDRESS2 TOADDRESS(16#100#)

$FIELDLAST 255

SFILETERMINATOR I I

SFIXEDNAME NO SUCHFIXED TYPE

$FLOATNAME NOSUCHFLOATTYPE

$FORMSTRING ""

SFORMSTRING2 "CANNOT-RESTRICT FILECAPACITY"

$GREATER THAN DURATION

$GREATERTHANDURATION BASE LAST
-00050_000.0

$GREATERTHANFLOAT BASE LAST
- - 1.80141E+38

$GREATER THAN FLOATSAFE LARGE
- - -1.OE308

A-2

MACRO PARAMETERS

$GREATERTHANSHORTFLOAT SAFE LARGE
1.Of3O8-

$HIGHPRIORITY 16

$ILLEGALEXTERNALFILENAMEl
not-there//not-there/*'

$ILLEGALEXTERNALFILENAME2
not-there/not-there/not-there/././not-there///

$INAPPROPRIATELINELENGTH
-1

$INAPPROPRIATEPAGELENGTH
-1

$INCLUDE PRAGMA1 EXPORT-OBJECT

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("IB28006E1.ADA"I)

$INTEGERFIRST -2147483648

$INTEGER-LAST 2147483647

$INTEGERLASTPLUS_1 2147483648

S INTERFACELANGUAGE C

SLESSTHANDURATION -100000.0

$LESSTHANDURATIONBASE FIRST
-150_000_000.0

$LINETERMINATOR I

$LOW-PRIORITY 1

$MACHINECODESTATEMENT
NULL;

$KACHINECODETYPE NOSUCHTYPE

SMANTISSA-DOC 31

$MAXDIGITS 15

$MAXINT 2147483647

SMAXINT PLUS 1 2147483648

SHININT -2147483648

A- 3

MACRO PARAMETERS

$NAME SHORTSHORT INTEGER

$NAMELIST HP9000_300

$NAMESPECIFICATION1 X2120A

SNAKESPECIFICATION2 X2120B

$NAMESPECIFICATION3 X3114A

$NEG BASEDINT 16#FFFFFF-FD#

$NEVMEMSIZE 1048576

$NEWSTORUNIT 8

$NEWSYSNAME HP9000_300

$PAGETERMINATOR ASCII.FF

$RECORDDEFINITION RECORD NULL; END RECORD;

$RECORDNAME NOSUCH MACHINECODE TYPE

$TASKSIZE 32

$TASKSTORAGESIZE 32768

STICK 0.020

$VARIABLEADDRESS TOADDRESS(16#0020#)

$VARIABLEADDRESS1 TOADDRESS(16*0024#)

$VARIABLEADDRESS2 TOADDRESS(16#0028*)

$YOUR PRAGMA EXPORTOBJECT

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and

t- to thic3 report.

B-1

ADA(1) Series 300 Only (Requires Optional Ada Software) ADA(1)

The following options are recognized:

-a Store the supplied annotation string in the
library with the compilation unit. This
string can later be displayed by the unit
manager. The maximum length of this string
is 80 characters. The default is no string.

-b Display abbreviated compiler error messages
(default is to display the long forms).

-C Suppress link phase and, if binding occurred,
preserve the object file produced by the
binder. This option only takes effect if
linking would normally occur. Linking
normally occurs when binding has been
requested.

Use of this option causes an informational
message to be displayed on standard error
indicating the format of the ld(l) command
that should be used to link the program. It
is recommended that the user supply
additional object (.o) and archive (.a) files
and additional library search paths (-lx)
only in the places specified by the
informational message.

When ld is later used to actually link the
program, the following conditions must be
met:

1. The Ada library specified when the bind
was performed must be respecified.

2. The .o file generated by the binder must
be specified before any HP-UX archive is
specified (either explicitly or with
-1).

3. If -ic is specified when linking, any .o
file containing code that uses stdio(3S)
routines must be specified before -lc is
specified.

-d Cause the compiler to store additional
information in the Ada library for the units
being compiled for use by the Ada debugger
(see ada.probe(1)). Only information
required for debugging is saved; the source
is not saved. (see -D.) By default, debut
information is not stored.

Hewlett-Packard Company - 3 - HP-UX Release 7.0: Sept 1989

ADA(1) Series 300 Only (Requires Optional Ada Software) ADA(1)

Cause the binder to produce a debug
information file for the program being bound
so that the resulting program can be
manipulated by the Ada debugger. The debug
information file name will be the executable
program file name with .cui appended. If the
debug information file name would be
truncated by the file system on which it
would be created, an error will be reported.

Only sources compiled with the -d or -D
option contribute information to the debug
information file produced by the binder.

-e <nnn> Stop compilation after <nnn> errors (legal
range 0..32767, default 50).

-i Cause any pending or existing instantiations
of generic bodies in this Ada library, whose
actual generic bodies have been compiled or
recompiled in another Ada library, to be
compiled (or recompiled) in this Ada library.

This option is treated as a special "source"
file and the compilation is performed when
the option is encountered among the names of
any actual source files.

Any pending or existing instantiations in the
same Ada library into which the actual
generic body is compiled (or recompiled), do
not need this option. Such pending or
existing instantiations are automatically
compiled (or recompiled) when the actual
generic body is compiled into the same Ada
library.

Warning: Compilation (or recompilation) of
instantiations either automatically or by
using this option only affects instantiations
stored as separate units in the Ada library
(see -u). Existing instantiations which are
"inline" in another unit are not
automatically compiled or recompiled by using
this option. Units containing such
instantiations must be explicitly recompiled
by the user if the actual generic body is
recompiled.

-k Cause the compiler to save an internal
representation of the source in the Ada
library for use by the Ada cross referencer

Hewlett-Packard Company - 4 - HP-UX Release 7.0: Sept 1989

ADA(l) Series 300 Only (Requires Optional Ada Software) ADA(1)

ada.xref(l). By default, the internal
representation is not saved.

-lx Cause the linker to search the HP-UX library
named either /lib/libx.a (tried first) or
/usr/lib/libx.a (see ld(1)).

-a <nnn> The supplied number is the size in Kbytes to
be allocated at compile time to manipulate
library information. The range is 500 to
32767. The default is 500. The default size
should work in almost all cases. In some
extreme cases involving very large programs,
increasing this value will improve
compilation time. Also, if the value is to
small, STORAGEERROR can be raised.

-n Cause the output file from the linker to be
marked as shareable (see -N). For details
refer to chatr(l) and ld(l).

-o outfile Name the output file from the linker outfile
instead of a.out. In addition, if used with
the -c option, name the object file output by
the binder outfile.o instead of a.out.o. If
debugging is enabled (with -d or -D), name
the debug information file output by the
binder outfile.cui instead of a.out.cui.

The object file output by the binder is
deleted if -c is not specified.

-q Cause the output file from the linker to be
marked as demand loadable (see -Q). For
details refer to chatr(l) and ld(l).

-r <nnn> Set listing line length to <nnn> (legal range
60..255, default 79). This option applies to
the listing produced by both the compiler and
the binder (see -B, -L and -W b,-L).

-s Cause the output of the linker to be stripped
of symbol table information (see ld(l) and
strip(l)).

-t c, name Substitute or insert subprocess c with name
where c is one or more of a set of
identifiers indicating the subprocess(es).
This option works in two modes: 1) if c is a
single identifier, name represents the full
path name of the new subprocess; 2) if c is a
set of (more than one) identifiers, name

Hewlett-Packard Company - 5 - HP-UX Release 7.0: Sept 1989

ADA(1) Series 300 Only (Requires Optional Ada Software) ADA(1)

represents a prefix to which the standard
suffixes are concatenated to construct the
full path name of the new subprocesses.

The possible values of c are the following:

b binder body (standard suffix is adabind)
c compiler body (standard suffix is

adacomp)
0 same as c
I linker (standard suffix is ld)

-u Cause instantiations of generic program unit
bodies to be stored as separate units in the
Ada library (see -i).

If -u is not specified, and the actual
generic body has already been compiled when
an instantiation of the body is compiled, the
body generated by the instantiation is stored
"inline" in the same unit as its declaration.

If -u is specified, or the actual generic
body has not already been compiled when an
instantiation of the body is compiled, the
body generated by the instantiation is stored
as a separate unit in the Ada library.

The -u option may be needed if a large number
of generic instantiations within a given unit
result in the overflow of a compiler internal
table.

Specifying -u reduces the amount of table
space needed, permitting the compiler to
complete. However it also increases the
number of units used within the Ada library,
as well as introduces a small amount of
overhead at execution time, in units which
instantiate generics.

-v Enable verbose mode, producing a step-by-step
description of the compilation, binding, and
linking process on standard error.

-w Suppress warniny i1esages.

-x Perform syntactic checking only. The
libraryname argument must be supplied,
although the Ada library is not modified.

-B Causes the compiler to produce a compilation

Hewlett-Packard Company - 6 - HP-UX Release 7.0: Sept 1989

ADA(1) Series 300 Only (Requires Optional Ada Software) ADA(l)

listing, suppressing page headers and the
error summary at the end of the compilation
listing. This is useful when comparing a
compilation listing with a previous
compilation listing of the same program,
without the page headers causing mismatches.
This option can not be specified in
conjunction the -L option.

-C Only generate checks for stack overflow. Use
of this option may result in erroneous (in
the Ada sense) program behavior. In
addition, some checks (such as those
automatically provided by hardware) might not
be suppressed. See the Users Guide for more
information.

-D Cause the compiler to store additional
information ,n the Ada library for the units
being compiled, for use by the Ada debugger
(see ada.probe(1)). In addition to saving
infori-tion required for debugging, an
internal representation of the actual source
is saved. This permits accurate source level
debugging at the expense of a larger Ada
library if the actual source file changes
after it is compiled. (see -d.) By default,
neither debug information nor source
information is stored.

Cause the binder to produce a debug
information file for the program being bound
so that the resulting program can be
manipulated by the Ada debugger. The debug
information file name is the executable
program file name with .cui appended. If the
debug information file name would be
truncated by the file system on which it
would be created, an error will be reported.

Only sources compiled with the -d or -D
option contribute information to the debug
information file produced by the binder

-G Generate code but do not update the library.
This is primarily intended to allow one to
get an assembly listing (with -S) without
changing the library. The libraryname
argument must be supplied, although the Ada
library is not modified.

-I Suppress all inlining. No procedures or

Hewlett-Packard Company - 7 - HP-UX Release 7.0: Sept 1989

ADA(l) Series 300 Only (Requires Optional Ada Software) ADA(1)

functions are expanded inline and pragma
inline is ignored. This also prevents units
compiled in the future (without this option
in effect) from inlining any units compi.'ed
with this option in effect.

-L Write a program listing with error
diagnostics to standard output. This option
can not be specified in conjunction with the
-B option.

-M <main> Invoke the binder after all source files
named in the command line (if any) have been
successfully compiled. The argument <main>
specifies the entry point of the Ada program;
<main> must be the name of a parameterless
Ada library level procedure.

The library level procedure <main> must have
been successfully compiled into (or linked
into) the named Ada library, either by this
invocation of ada or by a previous invocation
of ada (or ada.umg(UTIL)).

The binder produces an object file named
a.out.o (unless -o is used to specify an
alternate name), only if the option -c is
also specified. The object file produced by
the binder is deleted unless the option -c is
specified. Note that the alternate name is
truncated, if necessary, prior to appending
.0.

-N Cause the output file from the linker to be
marked as unshareable (see -n). For details
refer to chatr(l) and ld(l).

-O Invoke the optimizer. This is equivalent to
+0 eioE.

-P <nnn> Set listing page length to <nnn> lines (legal
range 10..32767 or 0 to indicate no page
breaks, default 66). This length is the
total number of lines listed per listing
page. It includes the heading, header and
trailer blank lines, listed program lines,
and error message lines. This option applies
to the listing produced by both the compiler
and the binder (see -L and -W b,-L).

-Q Cause the output file from the linker to be
marked as not demand loadable (see -q). For

Hewlett-Packard Company - 8 - HP-UX Release 7.0: Sept 1989

ADA(l) Series 300 Only (Requires Optional Ada Software) ADA(1)

details refer to chatr(1) and ld(l).

-R Suppress all runtime checks. However, some
checks (such as those automatically provided
by hardware) might not be suppressed. Use of
this option may result in erroneous (in the
Ada sense) program behavior.

-S Write an assembly listing of the code
generated to standard output. This output is
not in a form suitable for processing with
as(l).

-w C, arg, arg2,.. . ,a.gN]
Cause argl through aMN to be handed off to
subprocess c. The argi are of the form
-argoption[,argvalue], where argoption is the
name of an option recognized by the
subprocess and argvalue is a separate
argument to argoption where necessary. The
values that c can assume are those listed
under the -t--option as well as d (driver
program).

For example, the specification to pass the -r
(preserve relocation information) option to
the linker would be:

-W 1,-r

For example, the following:

-W b,-m,10,-s,2

sends the options -m 10 -s 2 to the binder.
Note that all the binder options can be
supplied with one -W, (more than one -W can
also be used) and that any embedded spaces
must be replaced with commas. Note that -W b
is the only way to specify binder options.

The -W d option specification allows
additional implementation-specific options to
be recognized and passed through the compiler
driver to the appropriate subprocess. For
example,

-W d,-O,eo

sends the option -O eo to the driver, which
sends it to the compiler so that the e and o
optimizations are performed. Furthermore, a

Hewlett-Packard Company - 9 - HP-UX Release 7.0: Sept 1989

ADA(l) Series 300 Only (Requires Optional Ada Software) ADA(l)

shorthand notation for this mechanism can be
used by prepending the option with +; as
follows:

+Oeo

This is equivalent to -W d,-O,eo. Note that
for simplicity this shorthand is applied to
each implementation-specific option
individually, and that the argvalue (if any)
is separated from the shorthand argoption
with white space instead of a comma.

-X Perform syntactic and semantic checking. The
libraryname argument must be supplied,
although the Ada library is not modified.

Binder Options
The following options can be passed to the binder using
-W b,...:

-W b,-b At execution time, interactive input blocks
if data is not available. All tasks are
suspended if input data is not available.
This option is the default if the program
contains no tasks (see -W b,-B).

-W b,-k Keep uncalled subprograms when binding. The
default is to remove them.

-W b,-m,<nnn> Set the initial program stack size to <nnn>
units of 1024 bytes (legal range l..32767,
default 10 units = 10 * 1024 bytes = 10240
bytes). The value is rounded up to the next
multiple of 2.

-W b,-s,<nnn> Cause round-robin scheduling to be used for
tasking programs. Set the time slice to
<nnn> tens of milliseconds (legal range
1..32767 or 0 to turn off time slicing). By
default, round-robin scheduling is enabled
with a time slice of 1 second (<nnn> = 100).

The time slice granularity is 20 milliseconds
(<nnn> = 2).

-W b,-t,<nnn> Set task stack size of created tasks to <nnn>
units of 1024 bytes.

Set the initial (and maximum) task stack size
(legal range 1-.32767, default 8 units = 8 *
1024 bytes = 8192 bytes).

Hewlett-Packard Company - 10 - HP-UX Release 7.0: Sept 1989

ADA(l) Series 300 Only (Requires Optional Ada Software) ADA(i)

-W b,-w Suppress warning messages.

-W b,-x Perform consistency checks without producing
an object file and suppress linking. The
-W b,-L option can be used to obtain binder
listing information when this option is
specified (see -W b,-L below).

-W b,-B At execution time, interactive input does not
block if data is not available. Only the
task(s) doing interactive input are suspended
if input data is not available. This option
is the default if the program contains tasks
(see -W b,-b) .

-W b,-L Write a binder listing with warning/error
diagnostics to standard error.

-W b,-T Suppress procedure traceback in response to
runtime errors and unhandled exceptions.

Locks
To ensure the integrity of their internal data structures,
Ada libraries and families are locked for the duration of
operations that are performed on them. Normally Ada
families are locked for only a short time when libraries
within them are manipulated. However, multiple Ada
libraries might need to be locked for longer periods during
a single operation. If more than one library is locked, ada
places an exclusive lock on one library, so it can be
updated, and a shared lock on the other(s), so that they can
remain open for read-only purposes.

An Ada family or library locked for updating cannot be
accessed in any way by any part of the Ada compilation
system except by the part that holds the lock. An Ada
family or library locked for reading can be accessed by any
part of the Ada compilation system desiring to read from the
Ada family or library.

If ada cannot obtain a lock after a suitable number of
retFis, it displays an informational message and
terminates.

Under some circumstances, an Ada family or Ada library might
be locked, but the locking program(s) might have terminated
(for example, due to system crash or network failure). If
you determine that the Ada family or Ada library is locked
but should not be locked, you may remove the lock.

Use ada.unlock(l) to unlock an Ada library and
ada.fiii-lock(l) to unlock an Ada family. However, unlocking

Hewlett-Packard Company - 11 - HP-UX Release 7.0: Sept 1989

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
othervise, references in this appendix are to linker documentation and not
to this report.

B-2

Options
Id recognizes the following options:

-d Forces definition of ''common'' storage,
i.e., assign addresses and sizes, even for -r
output.

-e ep Set the default entry point address for the
output file to be that of the symbol epsym.
(This option only applies to executable
files.)

-h symbol Prior to writing the symbol table to the
output file, mark this name as ''local'' so
that it is no longer externally visible.
This ensures that this particular entry will
not clash with a definition in another file
during future processing by ld. (Of course,
this only makes sense with the -r option.)
More than one symbol can be specified, but -h
must precede each one.

-lx Search a library libx.a, where x is one or
more characters. Because a library is
searched when its name is encountered, the
placement of a -1 is significant. By
default, libraries are located in /lib and
/usr/lib. If the environment variable LPATH
is present in the user's environment, it
should contain a colon-separated list of
directories to search. These directories are
searched instead of the default directories,
but -L options can still be used.

-M Produce a load map on the standard output.

-n Generate an (executable) output file with
code to be shared by all users. Compare with
-N.

-o outfile Produce an output object file by the name
outfile. (The default name is a.out.)

-q Generate an (executable) output file that is
demand-loadable. Compare with -Q.

-r Retain relocation information in the output
file for subsequent re-linking. Id will not
report undefined symbols.

Hewlett-Packard Company - 1 - HP-UX Release 7.0: Sept 1989

LD(I) i(1)

-8 Strip the output file of all symbol table,
relocation, and debug support information.
This might impair or prevent the use of a
symbolic debugger on the resulting program.
This option is incompatible with -r. (The
strip(l) command also removes this
information.)

-t Print a trace (to standard output) of each
input file as ld processes it.

-u symbol Enter symbol as an undefined symbol in the
symbol table. The resulting unresolved
reference is useful for linking a program
solely from object files in a library. More
than one symbol can be specified, but each
must be preceded by -u.

-v Display verbose messages during linking. For
each library module that is loaded, the
linker indicates which symbol caused that
module to be loaded.

-x Partially strip the output file; that is,
leave out local symbols. The intention is to
reduce the size of the output file without
impairing the effectiveness of object file
utilities. Note: use of -x might affect the
use of a debugger.

-z Arrange for run-time dereferencing of null
pointers to produce a SIGSEGV signal. (This
is the complement of the -Z option.)

-A name This option specifies incremental loading,
that is, linking to enable the resulting
object to be read into an already executing
program. The argument name specifies a file
whose symbol table provides the basis for
defining additional symbols. Only newly
linked material is entered into the text and
data portions of a.out, but the new symbol
table reflects all symbols defined before and
after the incremental load. Also, the -R
option can be used in conjunction with -A,
and allows the newly linked segment to
commence at the corresponding address. The
default starting address is the old value of
end.

Hewlett-Packard Company - 2 - HP-UX Release 7.0: Sept 1989

LD{l) LD(1)

-L dir Change the algorithm of searching for libx.a
to look in dir before looking in the default
places. More than one directory can be
specified, but each must be preceded by -L.
The -L option is effective only if it
precedes the -l option on the command line.

-N Generate an (executable) output file that
cannot be shared. This option also causes
the data to be placed immediately following
the text, and the text to be made writable.

-Q Generate an (executable) output file that is
not demand-loadable. (This is the complement
of the -q option.)

-R offset Set the origin (in hexadecimal) for the text
(i.e. code) segment.

-V num Use num as a decimal version stamp
identlfying the a.out file that is produced.
(This is not the same as the version
information reported by the SCCS what(1)
command.)

-X num Define the initial size for the linker's
global symbol table. Thus you can reduce
link time for very large programs, i.e.,
those with very many external symbols.

-Z Arrange for run-time dereferencing of null
pointers to be permitted. (See in cc(l) the
discussions of -Z and pointers.) (This is the
complement of the -z option.)

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to zompiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type SHORTSHORTINTEGER is range -128 .. 127;

type SHORTINTEGER is range -32768 32767;

type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -3.402823E+38 .. 3.402823E+38;

type LONG FLOAT is digits 15 range
-1.797693134862315E+308 .. 1.797693134862315E+308;

type DURATION is delta 2#0.00000000000001# range
-86400.0 .. 86400.0;

end STANDARD;

C-1

The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the
prior written consent of Hewlett-Packard Company.

Copyright (P 1989, 1990 by Hewlett-Packard Company

HI, 9000 Series 300 Computers

Reference Manual
for the

Ada Programming Language,
Appendix F for Ada 300

JHEWLETT
423PACKARD

HP Part No. 98860-90011
Printed in U.S.A. October 1990

Second Edition
E1090

Print History
The following table lists the printings of this document, together with the
respective release dates for each edition. The software version indicates the
version of the software product at the time this document was issued. Many
product releases do not require changes to the document. Therefore, do not
expect a one-to-one correspondence between product releases and document
editions.

Edition Date Software

Version

First Edition January 1990 92609A 04.35

Second Edition October 1990 xcxx.xx.xx.x

iii

Preface
This manual describes the implementation-dependent characteristics on the HP
9000 Series 300 System Ada Compiler. This compiler has been validated using
the Ada Compiler Validation Capability (ACVC) test suite from the Ada Joint
Program Office.

This manual provides information on machine dependencies as stipulated in the
Reference Manual for the Ada Programming Language (Ada RM). This manual
describes the following:

" HP implementation-dependent pragmas and attributes.

" Specifications of the packages SYSTEM and STANDARD.

" Instructions on using type representation clauses to fully specify the layout of
data objects in memory.

" Restrictions on unchecked type conversions.

* Implementation-dependent characteristics of input/output packages.

" Information about HP-UX signals and the Ada runtime environment.

" Instruction and examples on calling external subprogram written in Precision
Architecture RISC Assembly Language, HP C, HP FORTRAN 77, and HP
Pascal.

iv

->Note to reviewers: I'll check out the correct
titles and part numbers for the next review.

The following manuals provide additional information about the topics
indicated:

Ada

" Reference Manual for the Ada Programming Language
United States Department of Defense (1983)
MIL-STD-1815A
Order Number 008-000-00394-7
U.S. Government Printing Office, Washington DC 20402
(97055-90610)

" Ada 300 User's Guide
(98860-xxxxx)

Ada Tools

* Ada 300 Tools Manual
(98860-xx.xxx)

HP-UX Operating System

" HP-UN Reference
(09000-90013)

* HP-UX Concepts and Tutorials: Programming Environment
(97089-90042)

" liP- UX Concepts and Tutorials: Device I/O and User Interfacing
(97089-90057)

" HP-1fX Portability Guide
(98794-90047)

V

Assembly Language

I s HP-UX Assembler Reference Manual and ADB Tutorial
(98597-90020)

" MC68020 32-Bit Microprocessor User's Manual
(98615-90606)

" MC68881 Floating-Point Coprocessor User's Manual
(98615-90607)

C Language

* HP C Reference Manual
(92434-90001)

" HP C Programmer's Guide
(92434-90002)

" HP C Quick Reference Guide
(92434-90003)

HP FORTRAN 77

" HP FORTRAN 77/HP-UX Reference Manual
(92430-90005)

" HP FORTRAN 77/HP-UX Programmer's Reference
(92430-90004)

" HP FORTRAN 77/HP- UX Quick Reference Guide
(92430-90008)

vi

HP Pascal

" HP Pascal Reference Manual
(31502-9000 1)

" HP Pascal Programmer's Guide
(31502.90002)

* HP Pascal Quick Reference Guide
(31502-90003)

NFS® Systems

" Using jVFS Services
(B31013-90000)

" Installing and Administering NFS Services
(B31013-90001)

NFS® is a trademark of SUN Microsystems, Inc.

Vii

Conventions
This manual uses the conventions described in this section for syntax and
example programs.

Notation Description

lowercase Represents literals that must be entered exactly as shown.
nonbold

lowercase Represents Ada language reserved words.
boldface

italics Represents substitutable argument- names, program names, or
user-designated strings.

[J Specifies that an element inside brackets is optional.

A horizontal ellipsis in a syntax statement indicates that a
previous element can be repeated. For example:

identifier C , identifier 3 _

The above example will match any list of identifers each
separated by a comma.

When several elements are separated vertically by bars in a
syntax statement, you must select one of those elements. For
example:

A I B I C You must select A, B, or C

viii

Contents

1. F 1. Implementation Supported Pragmas
F 1.1 Interfacing the Ada Language with Other Languages 1-2

F 1.1.1 Pragma INTERFACE 1-3
F 1.1.2 Pragma INTERFACE-NAME 1-4
F 1.1.3 Example of INTERFACE and INTERFACE-NAME 1-5
F 1.1.4 Additional Information on INTERFACE and

INTERFACE-NAME 1-6
F 1.1.5 Pragma EXPORT 1-7
F 1.1.6 Pragma EXTERNAL-NAME 1-8
F 1.1.7 Example of EXPORT and EXTERNAL-NAME . 1-9

F 1.2 Using Text Processing Tools 1-10
F 1.2.1 Pragma INDENT 1-10
F 1.2.2 Pragma LIST 1-11
F 1.2.3 Pragma PAGE 1-11

F 1.3 Affecting the Layout of Array and Record Types 1-12
F 1.3.1 Pragma PACK 1-12
F 1.3.2 Pragma IMPROVE 1-12

F 1.4 Generating Code 1-13
F 1.4.1 Pragma ELABORATE 1-13
F 1.4.2 Pragma INLINE 1-14
F 1.4.3 Pragma SUPPRESS 1-15

F 1.5 Affecting Run Time Behavior 1-16
F 1.5.1 Pragma PRIORITY 1-16
F 1.5.2 Pragma SHARED 1-17

F 1.6 Pragmas Not Implemented 1-18

Appendix F - Ada/300 Contents-1

2. F 2. Implementation-Dependent Attributes
F 2.1 Limitation of the Attribute 'ADDRESS 2-2
F 2.2 Attribute SYSTEM.ADDRESS'IMPORT 2-3

3. F 3. The SYSTEM and STANDARD Packages
F 3.1 The Package SYSTEM 3-1
F 3.2 The Package STANDARD 3-4

4. F 4. Type Representation
F 4.1 Enumeration Types 4-2

F 4.1.1 Internal Codes of Enumeration Literals 4-3
F 4.1.2 Minimum Size of an Enumeration Type or Subtype . 4-5
F 4.1.3 Size of an Enumeration Type 4-6
F 4.1.4 Alignment of an Enumeration Type 4-6

F 4.2 Integer Types 4-7
F 4.2.1 Predefined Integer Types 4-7
F 4.2.2 Internal Codes of Integer Values 4-7
F 4.2.3 Minimum Size of an Integer Type or Subtype 4-8
F 4.2.4 Size of an Integer Type 4-10
F 4.2.5 Alignment of an Integer Type 4-12

F 4.3 Floating Point Types 4-13
F 4.3.1 Predefined Floating Point Types 4-13
F 4.3.2 Internal Codes of Floating Point Values 4-13
F 4.3.3 Minimum Size of a Floating Point Type or Subtype 4-16
F 4.3.4 Size of a Floating Point Type 4-16
F 4.3.5 Alignment of a Floating Point Type 4-16

F 4.4 Fixed Point Types 4-17
F 4.4.1 Predefined Fixed Point Types 4-17
F 4.4.2 Internal Codes of Fixed Point Values 4-18
F 4.4.3 Small of a Fixed Point Type 4-18
F 4.4.4 Minimum Size of a Fixed Point Type or Subtype . 4-19
F 4.4.5 Size of a Fixed Point Type 4-21
F 4.4.6 Alignment of a Fixed Point Type 4-22

F 4.5 Access Types 4-23
F 4.5.1 Internal Codes of Access Values 4-23
F 4.5.2 Collection Size for Access Types 4-23
F 4.5.3 Minimum Size of an Access Type or Subtype 4-25
F 4.5.4 Size of an Access Type 4-25

Contents-2 Appendix F - Ada/300

F 4.5.5 Alignment of an Access Type 4-25
F 4.6 Task Types 4-26

F 4.6.1 Internal Codes of Task Values 4-26
F 4.6.2 Storage for a Task Activation 4-26
F 4.6.3 Minimum Size of a Task Stack 4-28
F 4.6.4 Limitation on Length Clause for Derived Task Types 4-28
F 4.6.5 Minimum Size of a Task Type or Subtype 4-28
F 4.6.6 Size of a Task Type 4-28
F 4.6.7 Alignment of a Task Type 4-28

F 4.7 Array Types 4-29
F 4.7.1 Layout of an Array 4-29
F 4.7.2 Array component size and pragma PACK 4-29
F 4.7.3 Array Gap Size and Pragma PACK 4-30
F 4.7.4 Size of an Array Type or Subtype 4-32
F 4.7.5 Alignment of an Array Type 4-33

F 4.8 Record Types 4-34
F 4.8.1 Layout of a Record 4-34
F 4.8.2 Bit Ordering in a Component Clause 4-36
F 4.8.3 Value used for SYSTEM.STORAGEUNIT 4-37
F 4.8.4 Compiler-Chosen Record Layout 4-37
F 4.8.5 Change in Representation 4-38
F 4.8.6 Implicit Components 4-38
F 4.8.7 Indirect Components 4-40
F 4.8.8 Dynamic Components 4-41
F 4.8.9 Representation of the Offset of an Indirect Component 4-44
F 4.8.10 The Implicit Component RECORD-SIZE 4-45
F 4.8.11 The Implicit Component VARIANT-INDEX 4-45
F 4.8.12 The Implicit Component ARRAY-DESCRIPTOR . 4-47
F 4.8.13 The Implicit Component RECORD-DESCRIPTOR . 4-47
F 4.8.14 Suppression of Implicit Components 4-48
F 4.8.15 Size of a Record Type or Subtype 4-49
F 4.8.16 Size of an Object of a Record Type 4-50
F 4.8.17 Alignment of a Record Subtype 4-50

F 4.9 Data Allocation 4-51
F 4.9.1 Direct Allocation versus Indirect Allocation 4-52
F 4.9.2 Object Deallocation 4-52

F 4.9.2.1 Compiler-Generated Objects 4-52
F 4.9.2.2 Programmer-Generated Objects 4-52

Appendix F - Ada/300 Contents-3

F 4.9.2.3 Program Termination 4-53
F 4.9.3 Dynamic Memory Management 4-53

F 4.9.3 Collections of Objects 4-53
F 4.9.3.2 Global Dynamic Objects 4-54
F 4.9.3.3 Local Objects 4-55
F 4.9.3.4 Temporary Objects 4-55
F 4.9.3.5 Reclaiming Heap Storage 4-56

5. F 5. Names for Predefined Library Units

6. F 6. Address Clauses
F 6.1 Objects 6-1
F 6.2 Subprograms 6-2
F 6.3 Constants 6-2
F 6.4 Packages 6-2
F 6.5 Tasks 6-2
F 6.6 Data Objects 6-3
F 6.7 Task Entries 6-3

7. F 7. Restrictions on Unchecked Type Conversions

8. F 8. Implementation-Dependent Input-Output Characteristics
F 8.1 Ada I/O Packages for External Files 8-1

F 8.1.1 Implementation-Dependent Restrictions on I/O
Packages 8-3

F 8.1.2 Correspondence between External Files and HP-UX
Files 8-3

F 8.1.3 Standard Implementation of External Files 8-7
F 8.1.3.1 SEQUENTIALIO Files 8-7
F 8.1.3.2 DIRECTIO Files 8-8
F 8.1.3.3 TEXT.O Files 8-10

F 8.1.4 Default Access Protection of External Files 8-11
F 8.1.5 System Level Sharing of External Files 8-11
F 8.1.6 I/O Involving Access Types 8-13
F 8.1.7 I/O Involving Local Area Networks 8-13
F 8.1.8 Potential Problems with I/O From Ada Tasks 8-14
F 8.1.9 I/O Involving Symbolic Links 8-16
F 8.1.10 Ada I/O System Dependencies 8-17

Contents-4 Appendix F - Ada/300

F 8.2 The FORM Parameter 8-19
F 8.2.1 An Overview of FORM Attributes 8-19
F 8.2.2 The Format of FORM Parameters 8-19
F 8.2.3 The FORM Parameter Attribute - File Protection . 8-21
F 8.2.4 The FORM Parameter Attribute - File Buffering . 8-23
F 8.2.5 The FORM Parameter Attribute - File Sharing . 8-25

F 8.2.5.1 Interaction of File Sharing and File Buffering . 8-26
F 8.2.6 The FORM Parameter - Appending to a File 8-27
F 8.2.7 The FORM Parameter Attribute - Blocking 8-28

F 8.2.7.1 Blocking 8-28
F 8.2.7.2 Non-Blocking 8-28

F 8.2.8 The FORM Parameter - Terminal Input 8-29
F 8.2.9 The FORM Parameter Attribute - File Structuring . 8-30

F 8.2.9.1 The Structure of TEXTIO Files 8-30
F 8.2.9.2 The Structure of DIRECTIO and

SEQUENTIAL-1O Files 8-32

9. F 9. The Ada/300 Development System and HP-UX Signals
F 9.1 HP-UX Signals Reserved by the Ada/300 Runtime 9-2
F 9.2 Using HP-UX Signals in External Interfaced Subprograms 9-5
F 9.3 HP-UX Signals Used for Ada/300 Exception Handling 9-6
F 9.4 HP-UX Signals Used for Ada/300 Task Management 9-8
F 9.5 HP-UX Signals Used for Ada/300 Delay Timing 9-9
F 9.6 HP-UX Signals Used for Ada/300 Program Termination 9-10
F 9.7 HP-UX Signals Used for Ada/300 Interrupt Entries . . 9-12
F 9.8 Protecting Interfaced Code from Ada/300's Asynchronous

Signals 9-13
F 9.9 Programming in Ada/300 With HP-UX Signals 9-13

10. F 10. Limitations
F 10.1 Compiler Limitations 10-1
F 10.2 Ada Development Environment Limitations 10-4
F 10.3 Limitations Affecting User-Written Ada Applications 10-5

F 10.3.1 Restrictions Affecting Opening or Creating Files 10-5
F 10.3.1.1 Restrictions on Path and Component Sizes . 10-5
F 10.3.1.2 Conditions that Raise NAME-ERROR 10-5

F 10.3.2 Restrictions on TEXTIO.FORM 10-6
F 10.3.3 Restrictions on the Small of a Fixed Point Type . 10-6

Appendix F - Ada/300 Contents-5

(Delete section titled "Record Type Change of
Representation") 10-6

F 10.3.4 Record Type Alignment Clause 10-6
F 10.3.5 Pragma INTERFACE on Library Level Subprograms 10-7

11. F 11. Calling External Subprograms From Ada
F 11.1 General Considerations in Passing Ada Types 11-5

F 11.1.1 Scalar Types 11-5
F 11.1.1.1 Integer Types 11-6
F 11.1.1.2 Enumeration Types 11-6
F 11.1.1.3 Boolean Types 11-7
F 11.1.1.4 Character Types 11-7
F 11.1.1.5 Real Types 11-8

F 11.1.2 Access Types 11-9
F 11.1.3 Array Types 11-11
F 11.1.4 Record Types 11-12
F 11.1.5 Task Types 11-13

F 11.2 Calling Assembly Language Subprograms 11-14
F 11.2.1 Scalar Types and Assembly Language Subprograms 11-15

F 11.2.1.1 Integer Types and Assembly Language
Subprograms 11-15

F 11.2.1.2 Enumeration Types and Assembly Language
Subprograms 11-15

F 11.2.1.3 Boolean Types and Assembly Language
Subprograms 11-15

F 11.2.1.4 Character Types and Assembly Language
Subprograms 11-15

F 11.2.1.5 Real Types and Assembly Language Subprograms 11-15
F 11.2.2 Access Types and Assembly Language Subprograms 11-16
F 11.2.3 Array Types and Assembly Language Subprograms 11-16
F 11.2.4 Record Types and Assembly Language Subprograms 11-16

F 11.3 Calling HP C Subprograms 11-17
F 11.3.1 Scalar Types and HP C Subprograms 11-18

F 11.3.1.1 Integer Types and HP C Subprograms 11-19
F 11.3.1.2 Enumeration Types and HP C Subprograms . 11-20
F 11.3.1.3 Boolean Types and HP C Subprograms 11-21
F 11.3.1.4 Character Types and HP C Subprograms . . . 11-22
F 11.3.1.5 Real Types and HP C Subprograms 11-23

Contents-6 Appendix F - Ada/300

F 11.3.2 Access Types and HP C Subprograms 1-24
F 11.3.3 Array Types and HP C Subprograms 1-25
F 11.3.4 Record Types and HP C Subprograms 1-31

F 11.4 Calling HP FORTRAN 77 Language Subprograms . . . 1-32
F 11.4.1 Scalar Types and HP FORTRAN 77 Subprograms . 1-33

F 11.4.1.1 Integer Types and HP FORTRAN 77
Subprograms 1-33

F 11.4.1.2 Enumeration Types and HP FORTRAN 77
Subprograms 1-35

F 11.4.1.3 Boolean Types and HP FORTRAN 77
Subprogr..,as 1-36

F 11.4.1.4 Character Types and HP FORTRAN 77
Subprograms 1-38

F 11.4.1.5 Real Types and HP FORTRAN 77 Subprograms 1-39
F 11.4.2 Access Types and HP FORTRAN 77 Subprograms 1-40
F 11.4.3 Array Types and HP FORTRAN 77 Subprograms . 1-41
F 11.4.4 String Types and HP FORTRAN 77 Subprograms . 1-44
F 11.4.5 Record Types and HP FORTRAN 77 Subprograms 1-48
F 11.4.6 Other FORTRAN Types 1-49

F 11.5 Calling HP Pascal Language Subprograms 1-50
F 11.5.1 Scalar Types and HP Pascal Subprograms 1-52

F 11.5.1.1 Integer Types and HP Pascal Subprograms . . 1-52
F 11.5.1.2 Enumeration Types and HP Pascal Subprograms 1-54

F 11.5.1.3 Boolean Types and HP Pascal Subprograms . 1-54
F 11.5.1.4 Character Types and HP Pascal Subprograms . 1-54
F 11.5.1.5 Real Types and HP Pascal Subprograms 1-55

F 11.5.2 Access Types and HP Pascal Subprograms 1-56
F 11.5.3 Array Types and HP Pascal Subprograms 1-56
F 11.5.4 String Types and HP Pascal Subprograms 1-58
F 11.5.5 Record Types and HP Pascal Subprograms 1-62

F 11.6 Summary 1-63
F 11.7 Potential Problems Using Interfaced Subprograms . . . 1-66
F 11.8 Input-Output From Interfaced Subprograms 1-70

F 11.8.1 Files Opened by Ada and Interfaced Subprograms . . 1-70
F 11.8.2 Preconnected I/O and Interfaced Subprograms . . . I-70
F 11.8.3 Interactive I/O and Interfaced Subprograms 1-71

Appendix F - Ada/300 Contents-7

12. F 12. Interrupt Entries
F 12.1 Introduction 12-1
F 12.2 Immediate Processing 12-2
F 12.3 Deferred Processing 12-3
F 12.4 Handling an Interrupt Entirely in the Immediate

Processing Step 12-4
F 12.5 Initializing the Interrupt Entry Mechanism 12-5
F 12.6 Associating an Ada Handler with an HP-UX Signal . . . 12-7

F 12.6.1 Determining If Your Ada Handler Makes Ada Runtime
Calls 12-8

F 12.7 Disassociating an Ada Handler from an HP-UX Signal 12-10
F 12.8 Determining How Many Handlers are Installed 12-10
F 12.9 When Ada Signal Handlers Will Not Be Called 12-10
F 12.10 Address Clauses for Entries 12-11
F 12.11 Example of Interrupt Entries 12-11
F 12.12 Specification of the package INTERRUPT-MANAGER 12-12
F 12.13 Ada Runtime Routine Descriptions 12-17

Contents-8 Appendix F - Ada/300

Figures

4-1. Layout of an Array. 4-29
4-2. Record layout with an Indirect Component. 4-40
4-3. Example of a Data Layout. 4-43

11-1. Passing Access Types to Interfaced Subprograms 11-10

Appendix F - Ada/300 Contents-9

Tables

1-1. Ada/300 Pragmas 1-1
4-1. Methods to Control Layodt and Size of Data Objects 4-1
4-2. Alignment and Pragma PACK 4-33
8-1. Standard Predefined I/O Packages 8-2
8-2. User Access Categories 8-21
8-3. File Access Rights 8-22
8-4. File Sharing Attribute Modes 8-25
8-5. Text File Terminators 8-31
8-6. Structuring Binary Files with the FORM Parameter 8-33
8-6. Structuring Binary Files with the FORM Parameter

(Continued) 8-34
9-1. Ada/300 Signals 9-2

11-1. Ada Types and Parameter Passing Modes 11-2
11-2. Ada/300 versus HP C Integer Correspondence 11-19
11-3. Ada/300 versus HP FORTRAN 77 Integer Correspondence . 11-33
11-4. Ada/300 versus HP Pascal Integer Correspondence 11-52
11-6. Modes for Passing Parameters to Interfaced Subprograms 11-63
11-7. Types Returned as External Function Subprogram Results 11-64
11-8. Parameter Passing in the Series 300 Implementation 11-65
12-1. Heap Management Routines 12-17
12-2. Collection Management (no STORAGE.SIZE representation

clause) 12-17
12-3. Collection Management (collections with a STORAGE-SIZE

representation clause) 12-18
12-4. Tasking Routines12-19
12-4. Tasking Routines (Continued) 12-20
12-4. Tasking Routines (Continued) 12-21
12-5. Attributes Routines 12-22
12-6. Attributes for Tasks Routines 1.............. 2-22
12-7. Support for Enumeration Representation Clauses Routines 12-23

Contents-10 Appendix F - Ada/300

1

F 1. Implementation Supported Pragmas

This section describes the predefined language pragmas and the Ada/300
implementation-specific pragmas. Table F-1 lists these pragmas. I

Table 1-1. Ada/300 Pragmas

Action Pragma Name

Interface with subprograms written in other INTERFACE
languages INTERFACE-NAME

Support text processing tools INDENT
LIST
PAGE

Determine the layout of array and record types PACK
in memory IMPROVE

Direct the compiler to generate different code ELABORATE
than what is normally generated INLINE

SUPRESS

Affe-.t tasking programs PRIORITY
SHARED

Allows data objects to be referenced by a EXPORT
non-Ada external subprogram. EXTERNAL-NAME

Section F 1.6 lists predefined pragmas not implemented in Ada/300.

Appendix F - Ada/300 Implementation Supported Pragmas 1-1

F 1.1 Interfacing the Ada Language with Other Languages
Your Ada programs can call subprograms written in other languages when
you use the predefined pragmas INTERFACE and INTERFACE-NAME. Ada/300
supports subprograms written in these languages:

I s HP 68K Assembly Language
* HP C
* HP Pascal

I a HP FORTRAN 77 for HP 9000 Series 300 computers

Compiler products from vendors other than Hewlett-Packard may not conform
to the parameter passing conventions given below. See section F 11 for detailed
information, instructions, and examples for interfacing your Ada programs with
the abo%' languages.

In addition, data objects declared in a global Ada scope can be referenced by
a non-Ada external subprogram when you use the predefined pragma EXPORT.
Alternative names for a global Ada data object can be defined when you use
the pragma EXTERNAL-NAME.

1-2 Implementation Supported Pragmas Appendix F - Ada/300

F 1.1.1 Pragma INTERFACE

The pragma INTERFACE (Ada RM, section 13.9) informs the compiler that
a non-Ada external subprogram will be supplied when the Ada program is
linked. Pragma INTERFACE specifies the programming language used in the
external subprogram and the name of the Ada interfaced subprogram. The
corresponding parameter calling convention to be used in the interface is
implicitly defined in the language specification.

Syntax

pragma INTERFACE (Language-name, Ada.subprogram.name);

Parameter Description

Language-name is one of ASSEMBLER, C, PASCAL, or FORTRAN.

Ada.subprogram.name is the name used within the Ada program when
referring to the interfaced external subprogram.

It is not possible to supply a pragma INTERFACE to a library-level subprogram.
Any subprogram that a pragma INTERFACE applies to must be contained within
an Ada compilation unit, usually a package.

Appendix F - Ada/300 Implementation Supported Pragmas 1-3

F 1.1.2 Pragma INTERFACE-NAME

I Ada/300 provides the implementation-defined pragma INTERFACE-NAME to
associate an alternative name with a non-Ada external subprogram that has
been specified to the Ada program by the pragma INTERFACE.

Syntax

pragma INTERFACE-NAME (Adasubprogram name,
"External-subprogram. name");

Parameter Description

Ada.subprogram-name is the name when referring to the interfaced external
subprogram.

EzternaLsubprogram.nname is the external name used outside the Ada program.

You must use pragma INTERFACE-NAME whenever the interfaced subprogram
name contains characters not acceptable within Ada identifiers or when the
interfaced subprogram name contains uppercase letter(s). You can also use
a pragma INTERFACE-NAME if you want your Ada subprogram name to be
different than the external subprogram name.

If a pragma INTERFACE.NAME is not supplied, the external subprogram name is
the name of the Ada subprogram specified in the pragma INTERFACE, with all
alphabetic characters shifted to lowercase letters.

I The compiler also prefixes the external subprogram name with one underscore
character (-) and truncates this name to 254 characters if necessary. This
modification conforns to the naming conventions used by the HP linker (ld(1)
- Link Editor) on the HP 9000 Series 300 Computer System.

Pragma INTERFACE.NAME is allowed at the same places in an Ada program as
pragma INTERFACE (see Ada RM, section 13.9.) Pragma INTERFACE-NAME must
follow the declaration of the corresponding pragma INTERFACE and must be
within the same declarative part, although it need not immediately follow that
declaration.

1-4 Implementation Supported Pragmas Appendix F - Ada/300

F 1.1.3 Example of INTERFACE and INTERFACE-NAME

The following example illustrates the INTERFACE and INTERFACE-NAME
pragmas.

package SAMPLELIB is

function SAMPLE.DEVICE (X INTEGER) return INTEGER;
function PROCESS-SAMPLE (X INTEGER) return INTEGER;

private

pragma INTERFACE (ASSEMBLER, SAMPLE-DEVICE);
pragma INTERFACE (C, PROCESS-SAMPLE);

pragma INTERFACE-NAME (SAMPLE-DEVICE, "DevlO");
pragma INTERFACE-NAME (PROCESS-SAMPLE, "DoSample");

end SAMPLELIB;

This example defines two Ada subprograms that are known in Ada code as
SAMPLE-DEVICE and PROCESS-SAMPLE. When a call to SAMPLE-DEVICE is
executed, the program will generate a call to the externally supplied assembly
function Devlo. Likewise, when a call to PROCESS-SAMPLE is executed,
the program will generate a cail to the externally supplied HP C function
DoSample, which is named Do-Sample by both the HP C compiler and the HP
Ada compiler.

The compiler prefixes the external subprogram name with one underscore
character (-) and truncates this name to 254 characters if necessary. This
modification conforms to the naming conventions used by the HP linker
(ld(1)) - Link Editor) on the HP 9000 Series 300 Computer System.

By using the pragma INTERFACE-NAME, the names for the external subprograms
to associate with the Ada subprogram are explicitly identified. If pragma
INTERFACE.NAME had not been used, the two external names referenced would |
be -sample-device and -process -sample.

Appendix F - Ada/300 Implementation Supported Pragmas 1-5

F 1.1.4 Additional Information on INTERFACE and
INTERFACE-NAME

Either an object file (for binding and linking with the same command) or an
object library (for binding and linking separately) that defines the external
subprograms must be provided as a command line parameter to the Ada
binder. The command line parameter must be provided to the linker 2d(1) if
you call the linker separately. If you do not provide an object file that contains
the definition for the external subprogram, the HP-UX linker, id(1), will issue
an error messagc.

To avoid conflicts with the Ada runtime system, the names of interfaced
I external routines should not begin with the letters "alsy" or ".Ada" because

the Ada runtime system prefixes its internal routines with these prefixes.

When you want to call an HP-UX system call from Ada code, you should use
a pragma INTERFACE with C as the language name. You might need to use a
pragma INTERFACE-NAME to explicitly supply the external name. This external
name must be the same as the name of the system call that you want to call.
(See section 2 of the HP-UX Reference for details.) In this case it is not
necessary to provide the C object file to the binder, because it will be found
automatically when the linker searches the system library.

When you want call an HP-UX library function from Ada code, you should
use a pragma INTERFACE with C as the language name. You should use pragma
INTERFACENAME to explicitly supply the external name. This external name
must be exactly the same as the name of the library function. (See section 3 of
the HP-UX Reference for details.) If your library function is located in either
the Standard C Library or the Math Library, it is not necessary to provide
the object library to the binder because the binder always searches these
two libraries. If your library function is located in any of the other standard
libraries, you must provide the -lx option to the binder to instruct the binder
to search the library.

See section F 11 for additional information on using pragma INTERFACE and
pragma INTERFACE-NAME.

1-6 Implementation Supported Pragmas Appendix F - Ada/300

F 1.1.5 Pragma EXPORT

The pragma EXPORT allows for a data object declared in a global Ada scope to
be referenced by a non-Ada external subprogram. Pragma EXPORT specifies
the programming language and the name of the Ada data object. The default
name for the externally visible symbol is the name of the Ada object in all
lowercase letters with an underscore character (-) attached to the beginning.
The pragma EXTERNAL-NAME (described in section F 1.1.6) can be used to
change this default.

Syntax

pragma EXPORT (Language-name, Ada.subprogram name);

Parameter Description

Language-name is one of ASSEMBLER, C, PASCAL, or FORTRAN.

Ada-subprogram-name is the name used within the Ada program when
I referring to the interfaced external subprogram.

The pragma EXPORT must occur in a declarative part and applies only to
objects declared in the same declarative part; that is, generic instantiated
objects or renamed objects are excluded.

The pragma EXPORT can only be used for objects with direct allocation mode
that are declared in a library package. Objects are allocated with indirect
allocation mode if they are dynamic or have a significant size. For more details,
see section F 4.9, "Data Allocation."

Appendix F - Ada/300 Implementation Supported Pragmas 1-7

F 1.1.6 Pragma EXTERNAL-NAME

The pragma. EXTERNAL-NAME is used to supply an alternative name for a
global Ada data object that has been exported using a pragma EXPORT. The
pragma EXTERNAL-NAME can be used anywhere in an Ada program where the
pragma EXPORT is allowed. The pragma EXTERNAL-NAME must occur after the
corresponding pragma EXPORT and within the same library package.

Syntax

pragma EXTERNAL.NAME (Ada-object-name,
"EzternaLobject-name ");

Parameter Description

Ada-object-name is the name when referring to the interfaced external
subprogram.

ExiernaLobject-name is the external name used outside the Ada program.

The compiler also prefixes the external object name with one underscore
character (-) and truncates this name to 254 characters if necessary. This
modification confoms to the naming conventions used by the HP linker (ld(1)
- Link Editor) on the HP 9000 Series 300 Computer System.

1-8 Implementation Supported Pragmas Appendix F - Ada/300

F 1.1.7 Example of EXPORT and EXTERNAL-NAME

The following example illustrates the EXPORT and EXTERNAL-NAME pragmas.

package ADAGLOBALS is

MYINT INTEGER;
MY-CHAR CHARACTER;

private

pragma EXPORT(ASSEMBLER, MY.INT);
prag-ma EXPORT(C, MYCHAR):

pragma EXTERNALNAME(MYINT, "Int_from.Ada");
pragma EXTERNALNAME(MYCHAR, "Char-fromAda");

end ADAGLOBALS;

This example defines two Ada data objects that are known in Ada code as
MYINT and MY-CHAR. The externally visible symbols for the two data objects
are _Int-fromAda and _Char-fromAda, respectively.

The compiler prefixes the external symbol name with one underscore and
truncates the name to 254 characters if necessary. This modification conforms
to the naming conventions used by the HP Linker (ld(1) - Link Editor) on the
HP 9000 Series 300 Computer System.

By using the pragma EXTERNAL.NAME, the names of the external symbols are
explicitly identified. If pragma EXTERNAL-NAME had not been used, the two
external names would be _my.int and -my-char.

Appendix F - Ada/300 Implementation Supported Pragmas 1-9

F 1.2 Using Text Processing Tools
The pragma INDENT is a formatting command that affects the HP supplied
reformatter, ada.format(1). This pragma does not affect the compilation
listing output of the compiler. The pragmas LIST and PAGE are formatting
commands that affect the compilation listing output of the compiler.

F 1.2.1 Pragma INDENT

I Ada/300 provides the implementation-defined pragma INDENT to assist in
reformatting Ada source code. You can place these pragmas in the source code
to control the actions of ada. format (1).

Syntax

pragma INDENT (ON I OFF);

Parameter Description

OFF ada. format does not modify the source lines after the pragma.

ON ada. format resumes its action after the pragma.

The default for pragma INDENT is ON.

1-10 Implementation Supported Pragmas Appendix F - Ada/300

F 1.2.2 Pragma LIST

The pragma LIST affects only the compilation listing output of the compiler.
It specifies that the listing of the compilation is to be continued or suspended
until a LIST pragma with the opposite argument is given within the same
compilation. The pragma itself is always listed if the compiler is producing a
listing. The compilation listing feature of the compiler is enabled by issuing
one of the compiler options -L or -B to the ada(l) command.

Syntax

pragma LIST (ON I OFF);

Parameter Description

OFF The listing of the compilation is suspended after the pragma.

ON The listing of the compilation is resumed and the pragma is listed.

The default for pragma LIST is ON.

F 1.2.3 Pragma PAGE
The pragma PAGE affects the compilation listing output of the compiler. It
specifies that the program text which follows the pragma should start on a new
page (if the compiler is currently producing a listing).

Syntax

pragma PAGE;

Appendix F - Ada/300 Implementation Supported Pragmas 1.11

F 1.3 Affecting the Layout of Array and Record Types
The pragmas PACK and IMPROVE affect the layout of array and record types in
memory.

F 1.3.1 Pragma PACK

The pragma PACK takes the simple name of an array type as its only argument.
The allowed positions for this pragma and the restrictions on the named type
are governed by the same rules as for a repesentation clause. The pragma
specifies that storage minimization should be the main criterion when selecting
the representation of the given type.

Syntax

pragma PACK (array-type- name);

I The pragma PACK is not implemented for record types on Ada/300. You can
use a record representation clause to minimize the storage requirements for a
record type.

The pragma PACK is discussed further in section F 4.7, "Array Types."

F 1.3.2 Pragma IMPROVE

The pragma IMPROVE, an implementation-defined pragma, suppresses implicit
components in a record type.

Syntax

pragma IMPROVE (TIME I SPACE , [ON =>3 record-type- name);

The default for pragma IMPROVE is TIME. This pragma is discussed further in
section F 4.8, "Record Types."

1-12 Implementation Supported Pragmas Appendix F - Ada/300

F 1.4 Generating Code
The pragmas ELABORATE, INLINE, and SUPPRESS direct the compiler to
generate different code than would have been normally generated. These
pragmas can change the run time behavior of an Ada program unit.

F 1.4.1 Pragma ELABORATE

The pragma ELABORATE is used when a dependancy upon elaboration order
exists. Normally the Ada compiler is given the freedom to elaborate library
units in any order. This pragma specifies that the bodies for each of the library
units named in the pragma must be elaborated before the current compilation
unit. If the current compilation unit is a subunit, the bodies of the named
library units must be elaborated before the body of the parent of the current
subunit.

Syntax

pragma ELABORATE (library-unit-name
[, library-unit-name I ...);

This pragma takes as its arguments one or more simple names, each of which
denotes a library unit. This pragma is only allowed immediately after the
context clause of a compilation unit (before the subsequent library unit or
secondary unit). Each argument must be the simple name of a library unit
that was identified by the context clause. (See the Ada RM, section 10.5, for
additional information on elaboration of library units .)

Appendix F - Ada/300 Implementation Supported Pragmas 1-13

F 1.4.2 Pragma INLINE

The pragma INLINE specifies that the subprogram bodies should be expanded

inline at each call whenever possible; in the case of a generic subprogram,

the pragma applies to calls of its instantiations. If the subprogram name is

overloaded, the pragma applies to every overloaded subprogram. Note that
pragma INLINE has no effect on function calls appearing inside package

specificationb.

Syntax

pragma INLINE (subprogram-.name C, 'subprogram-name] ...

This pragma takes as its arguments one or more names, each of which is either

the name of a subprogram or the name of a generic subprogram. This pragma

is only allowed at the place of a declarative item in a declarative part or

package specification, or after a library unit in a compilation, but before any

subsequent compilation unit. See the Ada RM, section 6.3.2, for additional
information on inline expansion of subprograms.

This pragma can be suppressed at compile time by issuing the compiler option
-I to the ada(1) command.

1.14 Implementation Supported Pragmas Appendix F - Ada/300

F 1.4.3 Pragma SUPPRESS

The pragma SUPPRESS allows the compiler to omit the given check from the
place of the pragma to the end of the declarative region associated with the
innermost enclosing block statement or program unit. For a pragma given in
a package specification, the permission extends to the end of the scope of the
named entity.

Syntax

pragma SUPPRESS (check- identifier C, [ON =>] name]);

The pragma SUPPRESS takes as arguments the identifier of a check and
optionally the name of either an object, a type or subtype, a subprogram, a
task unit, or a generic unit. This pragma is only allowed at the place of a
declarative item in a declarative part or a package specification.

If the pragma includes a name, the permission to omit the given check is
further restricted: it is given only for operations on the named object or
on all objects of the base type of a named type or subtype; for calls of a
named subprogram; for activations of tasks of the named task type; or for
instantiations of the given generic uni. (See the Ada RM, section 11.7, for
additional information on suppressing run time checks.)

The compiler can be directed to suppress all run time checks by issuing the
compiler option -R to the ada(1) command. The compiler can also be directed
to suppress all run time checks except for stack checks by issuing the compiler
option -C to the ada(1) command.

Appendix F - Ada/300 Implementation Supported Pragmas 1-15

F 1.5 Affecting Run Time Behavior
The pragmas PRIORITY and SHARED affect the run time behavior of - tasking
program.

F 1.5.1 Pragma PRIORITY

The pragma PRIORITY specifies the priority to be used for the task or tasks of
the task type. When the pragma is applied within the outermost declarative
part of the main subprogram, it specifies the priority to be used for the
environment task, which is the task that encloses the main subprogram. If a
pragma PRIORITY is applied to a subprogram that is not the main subprogram,
it is ignored.

Syntax

pragma PRIORITY (static-.expression);

The pragma PRIORITY takes as its argument a static expression of the
predefined integer subtype PRIORITY. For Ada/300, the range of the subtype
PRIORITY is 1 to 127. This pragma is only allowed within the specification of a
task unit or within the outermost declarative part of the main subprogram.

These task priorities are only relative to other Ada tasks that are concurrently
executing with the environment task. This pragma does not change the
priority of an Ada task or the Ada environment task relative to other HP-UX
processes. All the Ada tasks execute within a single HP-UX process. This
HP-UX process executes together with other HP-UX processes and is scheduled
by the HP-UX kernal. To change the priority of an HP-UX process, see the
command nice(i). See the Ada RM, section 9.8, for additional information on
task priorities.

1-16 Implementation Supported Pra- as Appendix F - Ada/300

F 1.5.2 Pragma SHARED

The pragma SHARED specifies that every read or update of the variable is
a synchronization point for that variable. The type for the variable object
is limited to scalar or access types because each read or update must be
implemented as an indivisible operation.

The effect of pragma SHARED on a variable object is to suppress the promotion
of this object to a register by the compiler. The compiler suppresses this
optimization and ensures that any reference to the variable always retrieves the
value stored by the most recent update operation.

Syntax

pragma SHARED (variable-.simple-.name);

The pragma SHARED takes as its argument a simple name of a variable. This
pragma is only allowed for a variable declared by ar object declaration and
whose type is a scalar or access type; the variable declaration and the pragma
must both occur (in this order) within the same declarative part or package
specification.

See the Ada RM, section 9.11, for additional information on shared variables.

Appendix F - Ada/300 Implementation Supported Pragmas 1-17

F 1.6 Pragmas Not Implemented
The following predefined language pragmas are not implemented and will issue
a warning at compile time:

pragma CONTROLLED (access- type.simple-name);

pragma MEMORY-SIZE (numeric-.literal);

pragma OPTIMIZE (TIME I SPACE) ;

pragma STORAGE-UNIT (numeric-.literal);

pragma SYSTEM-NAME (enumeration literal);

See the Ada RM, appendix B, for additional information on these predefined
language pragmas.

1-18 Implementation Supported Pragmas Appendix F - Ada/300

2
F 2. Implementation-Dependent Attributes

In addition to the representation attributes discussed in the Ada RM,
section 13.7.2, there are five implementation-defined representation attributes:

'OFFSET
'RECORD-SIZE
'VARIANT-INDEX
'ARRAY-DESCRIPTOR
'RECORD-DESCRIPTOR

These implementation-defined attributes are only used to refer to implicit
components of record types inside a record representation clause. Using these
attributes outside of a record representation clause will cause a compiler error
message. For additional information, see section F 4.8, "Record Types".

Appendix F - Ada/300 Implementation-Dependent Attributes 2.1

F 2.1 Limitation of the Attribute 'ADDRESS
The attribute 'ADDRESS is implemented for all entities that have meaningful
addresses. The compiler will issue the following warning message when the
prefix for the attribute 'ADDRESS refers to an object that has a meaningless
address:

The prefix of the 'ADDRESS attribute denotes a program unit that
has no meaningful address: the result of such an evaluation is
SYSTEM. NULL.ADDRESS.

The following entities do not have meaningful addresses and will cause the
above compilation warning if used as a prefix to 'ADDRESS:

" A constant that is implemented as an immediate value (that is, a constant
that does not have any space allocated for it).

" A package identifier that is not a library unit or a subunit.

" A function that renames an enumeration literal.

Additionally, the attribute 'ADDRESS when applied to a subprogram will return
different values depending upon the elaboration time of the subprogram. In
particular, the value returned by the attribute 'ADDRESS changes after the
elaboration of the subprogram body. This can be a problem when ADDRESS is
applied to a subprogram in a package specification. Therefore, the attribute
subprograLm ADDRESS should not be used in a package specification and instead
should be used only in the package body after the body of the subprogram.

2-2 Implementation-Dependent Attributes Appendix F - Ada/300

F 2.2 Attribute SYSTEM.ADDRESS'IMPORT
This implementation of Ada defines an additional attribute for the type
SYSTEM. ADDRESS. The attribute 'IMPORT can be applied to the type
SYSTEM. ADDRESS. This attribute is a function with two parameters; the
parameters are described in the table below.

yiitax

SYSTEM. ADDRESS' IMPORT("Language- name", "ezternaLsymboLname");

Parameter Description

Language-name Specifies the language. This parameter is a static Ada
string constant that must be either C, ASSEMBLER,
PASCAL, or FORTRAN. The characters used in the
language specification can be uppercase or lowercase
letters.

ezternal-symbo _name Specifies the name of an external data object. This
parameter is a static Ada string constant. The result is
a value of the type SYSTEM. ADDRESS that can be used to
denote this object in an address clause (see section F 6,
"Address Clauses" for details.)

Appendix F - Ada/300 Implementation-Dependent Attributes 2-3

The following example shows how SYSTEM. ADDRESS I IMPORT is used in an
address clause to provide access to a global abject defined in C.

The C declaration:

extern int errno;

The Ada declaration:

package ERRNO-.ACCESS is

ERRNO: INTEGER;
for ERRIJO use at SYSTEM.ADDRESS'IMPORT ('C11, "ierrno");

end ERRNOACCESS;

2-4 Implementation-Dependent Attributes Appendix F - Ada/300

3
F 3. The SYSTEM and STANDARD Packages

This section contains a complete listing of the two predefined library packages:
SYSTEM and STANDARD. These packages both contain implementation-dependent
specifications.

F 3.1 The Package SYSTEM
The specification of the predefined library package SYSTEM follows:

package SYSTEM is

type NAME is (HP9O00.300);

SYSTEM-NAME : constant NAME := HP9000.300;

STORAGE-UNIT constant : 8;

MEMORY-SIZE constant : 2**31-1;

MININT constant - (2**31);

MAXINT constant : 2**31 - 1;

MAX-DIGITS : constant : 15;

MAX-MANTISSA : constant : 31;

Appendix F - Ada/300 Implementation Supported Pragmas 3-1

FINE-DELTA constant 2#1.0#E-31;

TICK constant 0.020; -- 20 milliseconds

subtype PRIORITY is INTEGER range 1 .. 16;

type ADDRESS is private;
NULL-ADDRESS : constant ADDRESS; -- set to NULL

function VALUE (LEFT : in STRING) return ADDRESS;

-- Converts a string to an address. The string can represent
-- either an unsigned address (i.e. "16#XXXXXXXX#" where

-- XXXXXXXX is in the range O..FFFFFFFF) or a signed address
-- (i.e. "-16#XXXXXXXX#" where XXXXXXXX is in the range
-- O..7FFFFFFF). Leading blanks are ignored. The exception
-- CONSTRAINT.ERROR is raised if the string has not the

-- proper syntax.

ADDRESS-WIDTH : constant := 3 + 8 + 1;
subtype ADDRESS-STRING is STRING(1..ADDRP.SSWIDTH);

function IMAGE (LEFT : in ADDRESS) return ADDRESS.STRING;

-- Converts an address to a string. The returned string has the
-- unsigned representation described for the VALUE function.

type OFFSET is range -2**31 .. 2**31-1;

-- This type is used to measure a number of storage units
-- (bytes). The type is an Ada integer type.

function SAME-SEGMENT (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

-- This function returns true if the two addresses have the same
-- segment value. This is always true on the HP 9000/300.

ADDRESS-ERROR : exception;

3-2 Implementation Supported Pragmas Appendix F. Ada/300

-- This exception is raised by 1<", "<=", >1", ">=", 1-" if the
-- two addresses do not have the same segment value. This
-- exception is never raised on the HP 9000/300. The exception
-- CONSTRAINT-ERROR can be raised by "+" and "-"

function " " (LEFT : in ADDRESS; RIGHT in OFFSET)
return ADDRESS;

function " " (LEFT in OFFSET; RIGHT : in ADDRESS)
return ADDRESS;

function (LEFT in ADDRESS; RIGHT in OFFSET)
return ADDRESS;

-- These routines provide support for address computations. The
-- meaning of the " " and "-" operators is architecture dependent.
-- For the HP 9000/300 consider the ADDRESS parameter to be the
-- address of the first byte, of an array of contiguous bytes,
-- that grows from lower toward higher (in an unsigned sense)
-- memory addresses.

-- The "+" function returns the address of the byte at offset
-- OFFSET in the ADDRESS array. In C syntax it returns:
-- k(((char *) ADDRESS) [OFFSET])

-- The "-" function returns the address of the byte at offset
-- -OFFSET in the ADDRESS array. In C syntax it returns:
-- &(((char *) ADDRESS)EI-OFFSET])

function "-" (LEFT : in ADDRESS; RIGHT : in ADDRESS)
return OFFSET;

-- Returns the distance between the given addresses. The
-- result is signed. The exception ADDRESS-ERROR is never raised
-- on the HP 9000/300.

function "<=" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function "<" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

Appendix F - Ada/300 Implementation Supported Pragmas 3-3

function ">=" (LEFT, RIGHT in ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT in ADDRESS) return BOOLEAN;

-- Perform a comparison on addresses.
-- The comparison is unsigned.

function "mod" (LEFT : in ADDRESS; RIGHT : in POSITIVE)
return NATURAL;

-- Returns the offset of LEFT relative to the memory block
-- immediately below it starting at a multiple of RIGHT
-- storage units.

type ROUND-DIRECTION is (DOWN, UP);

function ROUND (VALUE : in ADDRESS;
DIRECTION : in ROUND-DIRECTION;

MODULUS : in POSITIVE) return ADDRESS;

-- Returns the given address rounded to a specific value.

generic
type TARGET is private;

function FETCHFROMADDRESS (A : in ADDRESS) return TARGET;

-- Return the bit pattern stored at address A, as a value of the
-- specified TARGET type.

-- WARNING: These routines may give unexpected results if used
-- with unconstrained types.

generic
type TARGET is private;

procedure ASSIGNTOADDRESS (A : in ADDRESS; T : in TARGET);

-- Store the bit pattern representing the value of the specified
-- TARGET object, into address A.

3-4 Implementation Supported Pragmas Appendix F -Ada/300

-- WARNING: These routines may give unexpected results if used
-- with unconstrained types.

type OBJECT-LENGTH is range 0 .. 2**31 -1;

-- This type is used to designate the size of an object in
-- storage units.

procedure MOVE (TO : in ADDRESS;
FROM : in ADDRESS;
LENGTH : in OBJECTLENGTH);

-- Copies LENGTH storage units starting at the address FROM to
-- the address TO. The source and destination may overlap.
-- Use of this procedure in optimized code may lead to
-- unexpected results.

private

--- private part of package SYSTEM

end SYSTEM;

Appendix F - Ada/300 Implementation Supported Pragmas 3-5

F 3.2 The Package STANDARD
The specification of the predefined library package STANDARD follows:

package STANDARD is

The operators that are predefined for the types declared
-- in this package are given in comments since they are
-- implicitly declared. Italics are used for pseudo-names
-- of anonymous types (such as universal-real,
-- universal-integer, and universal-fixed) and for undefined
-- information (such as aty-fixed-pointtypa).

-- Predefined type BOOLEAN
type BOOLEAN is (FALSE, TRUE);
for BOOLEAN use (FALSE => 2#0000_0000#,

TRUE => 2#1111-1111#);

-- The predefined relational operators for this type are
-- as follows (these are implicitly declared):
-- function "=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "1=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "<" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function ">" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function ">=" (LEFT, RIGHT BOOLEAN) return BOOLEAN;

-- The predefined logical operands and the predefined
-- logical negation operator are as follows (these are
-- implicitly declared):

-- function "and" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "or" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "xor" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

-- function "not" (RIGHT : BOOLEAN) return BOOLEAN;

3-6 Implementation Supported Pragmas Appendix F - Ada/300

-- Predefined universal types

-- type universal-integer is predefined;

-- The predefined operators for the type universal.integer

-- are as follows (these -are implicitly declared):

-- function "=" (LEFT, RIGHT universal-integer)

-- return BOOLEAN;
-- function "/=" (LEFT, RIGHT universal-integer)

-- return BOOLEAN;
-- function "<" (LEFT, RIGHT : universal-integer)
-- return BOOLEAN;
-- function "<=" (LEFT, RIGHT : universal-integer)
-- return BOOLEAN;
-- function ">" (LEFT, RIGHT universal-integer)

-- return BOOLEAN;
-- function ">=" (LEFT, RIGHT : universal-integer)
-- return BOOLEAN;

-- function "+" (RIGHT : universal-integer)

-- return universalinteger;
-- function .- (RIGHT : universal_integer)

-- return universal-integer;
-- function "abs" (RIGHT : universal-integer)
-- return universal-integer;

-- function "+" (LEFT, RIGHT : universal-integer)
-- return universal-integer;

-- function "-" (LEFT, RIGHT : universal-integer)
-- return universal-integer;

-- function "" (LEFT, RIGHT : universal-integer)
-- return universal-integer;

-- function "/" (LEFT, RIGHT universal-integer)
-- return universal-integer;

-- function "rem" (LEFT, RIGHT : universal-integer)
-- return universal-integer;
-- function "mod" (LEFT, RIGHT : universal-integer)

Appendix F - Ada/300 Implementation Supported Pragmas 3-7

-- return universal-integer;

-- function "**" (LEFT universal-integer;
-- RIGHT INTEGER) return universal-integer;

-- type universal-real is predefined;

-- The predefined operators for the type universal-real
-- are as follows (these are implicitly declared):
-- function "=" (LEFT, RIGHT : universal-integer)
-- return BOOLEAN;

-- function "/=" (LEFT, RIGHT : universal-integer)
-- return BOOLEAN;
-- function "<" (LEFT, RIGHT : universal-integer)
-- return BOOLEAN;

-- function "<=" (LEFT, RIGHT universal-integer)

-- return BOOLEAN;
-- function ">" (LEFT, RIGHT : univer:--..integer)
-- return BOOLEAN;
-- function ">=" (LEFT, RIGHT : universalinteger)
-- return BOOLEAN;

-- function "+" (RIGHT : universal-integer)

-- return universal-integer;
-- function .- " (RIGHT : universal-integer)

-- return universal-integer;
-- function "abs" (RIGHT : universal-integer)
-- return universalinteger;

-- function "+" (LEFT, RIGHT : univer a!-integer)
-- return universal_integer;
-- function .- (LEFT, RIGHT : universal-integer)
-- return universal-integer;
-- function "*" (LEFT, RIGHT universal-integer)

-- return universal-integer;
-- function 'T' (LEFT, RIGHT : universal-integer)
-- return universal-integer;

3-8 Implementation Supported Pragmas Appendix F - Ada/300

-- function "**" (LEFT : universal-real;

-- RIGHT : INTEGER) return universal-real;

-- In addition, the following operators are

-- predefined for universal types:

-- function "1" (LEFT : universal-integer;
-- RIGHT universal-real)

-- return universal-real

-- function 11*" (LEFT : univcrzzl-real;
-- RIGHT : universal-integer)
-- return universal- real;

-- function I/i (LEFT universal-real;

-- RIGHT : universal-integer)
-- return universal-real;

-- type universal-fixed is predefined;

-- The only operators declared for this type are:

-- function -1- (LEFT : any-fixed-point.type;
-- RIGHT : any-fixed-point-type)
-- return universal_fixed;

-- function "/" (LEFT : any-fixed-point-type;
-- RIGHT : any-fixed.point-type)
-- return universal_fixed;

-- Predefined and additional integer types

type SHORTSHORTINTEGER is range -128 .. 127; -- 8 bits long

-- This is equivalent to -(2**7) .. (2**7)-I
-- The predefined operators for this type are as follows
-- (these are implicitly declared):

-- function "=" (LEFT, RIGHT : SHORTSHORTINTEGER)

-- return BOOLEAN;
-- function "/=" (LEFT, RIGHT : SHORTSHORTINTEGER)

-- return BOOLEAN;

-- function "<" (LEFT, RIGHT SHORTSHORTINTEGER)

Appendix F - Ada/300 Implementation Supported Pragmas 3-9

-- return BOOLEAN;

-- function "<=" (LEFT, RIGHT : SHORTSHORTINTEGER)
-- return BOOLEAN;

-- function ">" (LEFT, RIGHT : SHORT_SHORT_INTEGER)

-- return BOOLEAN;

-- function ">=" (LEFT, RIGHT : SHORTSHORTINTEGER)

-- return BOOLEAN;

-- function "+" (RIGHT : SHORT.SHORT.INTEGER)

-- return SHORTSHORTINTEGER;

-- function "-" (RIGHT : SHORT.SHORTINTEGER)

-- return SHORTSHORTINTEGER;
-- function "abs" (RIGHT : SHORTSHORTINTEGER)

-- return SHORT.SHORT.INTEGER;

-- function "+" (LEFtRIGHT: SHORTSHORT.INTEGER)

-- return SHORT.SHORT.INTEGER;

-- function "... (LEFTRIGHT: SHORTSHORTINTEGER)
-- return SHORTSHORTINTEGER;

-- function "*" (LEFTRIGHT: SHORTSHORTINTEGER)

-- return SHORTSHORTINTEGER;

-- function "/" (LEFTRIGHT: SHORTSHORT.INTEGER)

-- return SHORTSHORTINTEGER;

-- function "rem" (LEFTRIGHT: SHORTSHORTINTEGER)

-- return SHORTSHORTINTEGER;

-- function "mod" (LEFTRIGHT: SHORTSHORTINTEGER)

-- return SHORTSHORTINTEGER;

-- function "**" (LEFT SHORTSHORT.INTEGER;
-- RIGHT : INTEGER) return SHORTSHORTINTEGER;

type SHORT-INTEGER is range -32-768 .. 32-767; --16 bits long

-- This is equivalent to -(2**15) .. (2** S)-1
-- The predefined operators for this type are as follows
-- (these are implicitly declared):

-- function "" (LEFT, RIGHT SHORT-INTEGER) return BOOLEAN;

-- function "/=" (LEFT, RIGHT : SHORT-INTEGER) return BOOLEAN;

3-10 Implementation Supported Pragmas Appendix F - Ada/300

- function 1<1 (LEFT, RIGHT SHORT-INTEGER) return BOOLEAN;
-- function <" (LEFT, RIGHT SHORT-INTEGER) return BOOLEAN;
-- function "<" (LEFT, RIGHT SHORT-INTEGER) return BOOLEAN;
-- function ">" (LEFT, RIGHT SHORTINTEGER) return BOOLEAN;

-- function ">=" (RIGHT SHORT-INTEGER) return SHORT-INTEGER;
-- function "+" (RIGHT SHORT-INTEGER) return SHORT-INTEGER;
-- function "abs"(RIGHT SHORT.INTEGER) return SHORT-INTEGER;

-- function "1+"1 (LEFT, RIGHT SHORT-INTEGER)
-- return SHORT-INTEGER;
-- function "-" (LEFT, RIGHT SHORT-INTEGER)
-- return SHORT-INTEGER;
-- function "*" (LEFT, RIGHT SHORT-INTEGER)
-- return SHORT-INTEGER;
-- function "/" (LEFT, RIGHT : SHORT-INTEGER)
-- return SHORT.INTEGER;
-- function "rem" (LEFT, RIGHT SHORT.INTEGER)
-- return SHORT-INTEGER;
-- function "mod" (LEFT, RIGHT SHORT-INTEGER)
-- return SHORT-INTEGER;

-- function "**" (LEFT SHORT-INTEGER;
-- RIGHT : INTEGER) return SHORT-INTEGER;

type INTEGER is range -2_147-483-648 .. 2147_483647;
-- type INTEGER is 32 bits long

-- This is equivalent to -(2**31) .. (2**31)-1
-- The predefined operators for this type are as follows
-- (these are implicitly declared):
-- function "" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "/" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "<" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function ">" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function ">" (LEFT, RIGHT : INTEGER) return BOOLEAN;

Appendix F - Ada/300 Implementation Supported Pragmas 3-11

-- function '+" (RIGHT INTEGER) return INTEGER;

-- function ".. (RIGHT : INTEGER) return INTEGER;
-- function "abs" (RIGHT INTEGER) return INTEGER;

-- function "+" (LEFT, RIGHT INTEGER) return INTEGER;

-- function "-" (LEFT, RIGHT : INTEGER) return INTEGER;

-- function "*" (LEFT, RIGHT INTEGER) return INTEGER;

-- function "/" (LEFT, RIGHT INTEGER) return INTEGER;
-- function "rem" (LEFT, RIGHT INTEGER) return INTEGER;
-- function "mod" (LEFT, RIGHT INTEGER) return INTEGER;

-- function "**" (LEFT : INTEGER; RIGHT : INTEGER)

-- return INTEGER;

-- Predefined INTEGER subtypes
subtype NATURAL is INTEGER range 0 .. INTEGER'LAST;
subtype POSITIVE is INTEGER range 1 .. INTEGER'LAST;

-- Predefined and additional floating point types

type FLOAT is digits 6 range -- 32 bits long

-2#1.111_1111_11-1.1111.1111.1111#E+127
2#1.111-1111-1111-1111-1111-1111#E+127;

-- This is equivalent to -(2.0 - 2.0**(-23)) * 2.0**127

-- +(2.0 - 2.0**(-23)) * 2.0**127

I

-- This is approximately equal to the decimal range:
-- -3.402823E 38 .. +3.402823E+38

-- The predefined operators for this type are as follows
-- (these are implicitly declared):

-- function "" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "/=" (LEFT, RIGHT FLOAT) return BOOLEAN;
-- function "<" (LEFT, RIGHT FLOAT) return BOOLEAN;

-- function <" (LEFT, RIGHT FLOAT) return BOOLEAN;

-- function ">" (LEFT, RIGHT FLOAT) return BOOLEAN;

-- function ">" (LEFT, RIGHT FLOAT) return BOOLEAN;

3-12 Implementation Supported Pragmas Appendix F -Ada/300

function (RIGHT FLOAT) return FLOAT;
-- function (RIGHT FLOAT) return FLOAT;

-- function "abs" (RIGHT FLOAT) return FLOAT;

-- function "" (LEFT, RIGHT FLOAT) return FLOAT;

-- function (LEFT, RIGHT FLOAT) return FLOAT;

-- function "-" (LEFT, RIGHT : FLOAT) return FLOAT;
-- function "1P (LEFT, RIGHT FLOAT) return FLOAT;

-- function "**" (LEFT : FLOAT; RIGHT : INTEGER) return FLOAT;

type LONG-LOAT is digits 15 range -- 64 bits long

-- This is equivalent to -(2.0 - 2.0**(-52)) * 2.0**1023
-- +(2.0 - 2.0**(-52)) * 2.0**1023 ..
-- This is approximately equal to the decimal range:
-- -1.797693134862315E+308 .. +1.797693134862315E+308

-- The predefined operators for this type are as follows
-- (these are implicitly declared):

-- function (LEFT, RIGHT : LONG-FLOAT) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : LONG-FLOAT) return BOOLEAN;
-- function "< (LEFT, RIGHT : LONG-FLOAT) return BOOLEAN;
-- function "< ((LEFT, RIGHT : LONG-FLOAT) return BOOLEAN;
-- function ">" (LEFT, RIGHT : LONG-FLOAT) return BOOLEAN;
-- function '>" (LEFT, RIGHT : LONG-FLOAT) return BOOLEAN;

-- function "+" (RIGHT : LONG-FLOAT) return LONG-FLOAT;
-- function ... (RIGHT LONG-FLOAT) return LONG-FLOAT;
-- function "abs" (RIGHT : LONG-FLOAT) return LONG-FLOAT;

-- function "+" (LEFT, RIGHT : LONG.FLOAT) return LONG-FLOAT;
-- function ... (LEFT, RIGHT : LONG-FLOAT) return LONG_FLOAT;
-- function "* (LEFT, RIGHT : LONG.FLOAT) return LONG-FLOAT;

Appendix F - Ada/300 Implementation Supported Pragmas 3-13

-- function " " CLEFT, RIGHT : LONG-FLOAT) return LONG-FLOAT;

-- function "**" (LEFT : LONG-FLOAT; RIGHT : INTEGER) return LON

--This implementation does not provide any other floating point types

-- Predefined type DURATION
type DURATION is delta 2#0.000_000000 0000_01#

range -86-400.0 .. 86_400.0;

-- DURATION'SMALL derived from this delta is 2.0**(-14),
-- which is the maximum precision that an object of type
-- DURATION can have and still be representable in this
-- implementation. This has an approximate decimal equivalent
-- of 0.000061 (61 microseconds). The predefined operators
-- for the type DURATION are the same as for any

-- fixed point type.

-- This implementation provides many anonymous predefined
-- fixed point types. They consist of fixed point types
-- whose "small" value is a power of 2.0 and whose mantissa
-- can be expressed using 31 or less binary digits.

-- Predefined type CHARACTER

-- The following lists characters for the standard ASCII
-- character set. Character literals corresponding to
-- control characters are not identifiers; they are
-- indicated in italics in this section.

type CHARACTER is

(nu±, soh, stx, etz, eot, enq, ack, bel,
bs, ht, lf, vt, ff, cr, so, si,
dle, dcl, dc2, dc3, dc4, nak, syn, etb,

can, em, sub, esc, fs, gs, rs, us,

3 1, Im ,metio , upe. $1, Ada

3-14 implementation Supported Pragmas Appendix F - Ada/300

) , 11' 2 , 13')4 , IS) '6, 7 ,

1 1 9 , ,:I ;,J) , P=))>I I?

'Q), 'A', 7B), 'C', 'D) 'E', 'f',)g),
HY)I , J , K , ILI W , IN , J ,

pY',)Q), $r1, IS , I' ,)' , IV), ',
,X I YY ')))[. \ , , I -)) - ,

Wx , jyl, 'z', '{), 'I', W} , W- , de0);

--The predefined operators for the type CHARACTER are
--the same as for any enumeration type.

-- Predefined type STRING (RM 3.6.3)
type STRING is array (POSITIVE range <>) of CHARACTER;

-- The predefined operators for this type are as follows:
-- function "" (LEFT, RIGHT STRING) return BOOLEAN;
-- function "/=' (LEFT, RIGHT STRING) return BOOLEAN;
-- function "<" (LEFT, RIGHT STRING) return BOOLEAN;
-- function "<" (LEFT, RIGHT STRING) return BOOLEAN;
-- function ">" (LEFT, RIGHT STRING) return BOOLEAN;
-- function '>" (LEFT, RIGHT : STRING) return BOOLEAN;

-- Predefined catenation operators
-- function "&" (LEFT : STRING; RIGHT STRING)
return STRING;
-- function "&" (LEFT CHARACTER; RIGHT STRING)

return STRING;
-- function "&" (LEFT STRING; RIGHT : CHARACTER)
return STRING;
-- function "&" (LEFT CHARACTER; RIGHT : CHARACTER)
return STRING;

Appendix F. Ada/300 Implementation Supported Pragmas 3-15

-- Predefined exceptions
CONSTRAINT-ERROR : exception;

NUMERIC.ERROR : exception;
PROGRAM-ERROR : exception;

STORAGEFRROR : exception;
TASKING.ERROR : exception;

-- Predefined package ASCII
package ASCII is

-- Control characters
NUL constant CHARACTER nul;

SOH constant CHARACTER soh;
STX constant CHARACTER stx;
ETX constant CHARACTER etx;
EOT constant CHARACTER eot;
ENQ constant CHARACTER enq;
PCK constant CHARACTER ack;
BEL constant CHARACTER bel;
BS constant CHARACTER bs;
HT constant CHARACTER ht;
LF constant CHARACTER If;
VT constant CHARACTER vt;
FF constant CHARACTER : ff;
CR constant CHARACTER cr;
SO constant CHARACTER so;

SI constant CHARACTER si;
DLE constant CHARACTER dle;
DC1 constant CHARACTER dcl;

DC2 constant CHARACTER dc2;
DC3 constant CHARACTER dc3;
DC4 constant CHARACTER dc4;
NAK constant CHARACTER nak;
SYN constant CHARACTER syn;
E-B :constant CHARACTER etb;
CAN constant CHARACTER can;
EM constant CHARACTER em;
SUB constant CHARACTER sub;
ESC constant CHARACTER esc;

3-16 Implementation Supported Pragmas Appendix F - Ada/300

FS constant CHARACTER fs;

GS constant CHARACTER gs;
RS constant CHARACTER rs;
US constant CHARACTER us;

DEL constant CHARACTER del;

-- other characters

EXCLAM constant CHARACTER '

QUOTATION constant CHARACTER :='";

SHARP constant CHARACTER :'#';

DOLLAR constant CHARACTER :'$';

PERCENT constant CHARACTER :'/ ;
AMPERSAND constant CHARACTER :='&';

COLON constant CHARACTER :':';
SEMICOLON constant CHARACTER :';';
QUERY constant CHARACTER :'?';

AT.SIGN constant CHARACTER :='Q0;
LBRACKET constant CHARACTER :'E';
BACK-SLASH constant CHARACTER :'\';

RBRACKET constant CHARACTER :='];
CIRCUMFLEX constant CHARACTER :'"';
UNDERLINE constant CHARACTER:=._ ,-
GRAVE constant CHARACTER.'

LBRACE constant CHARACTER :='{;
BAR constant CHARACTER :='I;
RBRACE constant CHARACTER :='};
TILDE constant CHARACTER :=I-";

-- Lower case letters

LC.A constant CHARACTER 'a';
LCB constant CHARACTER : b''
LCC constant CHARACTER 'c';
LCD constant CHARACTER : d';

LCE constant CHARACTER 'e';
LCF constant CHARACTER If';

LCG constant CHARACTER : g';
LC.H constant CHARACTER : h';

LCI constant CHARACTER 'i';

Appendix F - Ada/300 Implementation Supported Pragmas 3-17

LCJ constant CHARACTER

LC.K constant CHARACTER : kl;
LCL constant CHARACTER 11';

LCM constant CHARACTER : m';
LCN constant CHARACTER =n';
LC_.O constant CHARACTER 'o';

LCP constant CHARACTER 'p';
LCQ : constant CHARACTER : q';
LCR constant CHARACTER : rl;
LCS constant CHARACTER Is';
LCT constant CHARACTER =t';

LCU constant CHARACTER : u';
LCV constant CHARACTER : v';
LCW constant CHARACTER : wI;
LCX constant CHARACTER : x';
LCY constant CHARACTER IV;
LCZ constant CHARACTER 'z';

end ASCII;

end STANDARD;

3-18 Implementation Supported Pragmas Appendix F. Ada/300

4
F 4. Type Representation

This chapter explains how data objects are represented and allocated by the
HP Ada compiler for the HP 9000 Series 300 Computer System and how to
control this using representation clauses.

The representation of a data object is closely connected with its type.
Therefore, this section successively describes the representation of enumeration,
integer, floating point, fixed point, access, task, array, and record types.
For each class of type, the representation of the corresponding data object
is described. Except for array and record types, the description for each
class of type is independent of the others. Because array and record types
are composite types, it is necessary to understand the representation of their
components.

Ada/300 provides several methods to control the layout and size of data
objects; these methods are listed in table 4-1. t

Table 4-1. Methods to Control Layout and Size of Data Objects

Method Type Used On

pragma PACK array

pragma IMPROVE record

enumeration representation clause enumeration

record representation clause record

size specification clause any type

Appendix F - Ada/300 Type Representation 4-1

F 4.1.2 Minimum Size of an Enumeration Type or Subtype

The minimum size of an enumeration subtype is the minimum number of bits
necessary for representing the internal codes in normal binary form.

A static subtype of a null range has a minimum size of one. Otherwise, define
m and M to be the smallest and largest values for the internal codes values of
the subtype. The minimum size L is determined as follows:

Value of m Calculation of L - Representation
smallest positive integer such that:

m >= 0 M <= (2**L) - i Unsigned

m < 0 -(2**(L -1)) <= m and M <= (2**(L -1))-1 Signed two's complement

Example

type COLOR is (RED, ORANGE, YELLOW, GREEN, AQUA, BLUE, VIOLET);
-- The minimum size of COLOR is 3 bits.

subtype SUNNY-COLOR is COLOR range ORANGE .. YELLOW;

-- The minimum size of COLOR is 2 bits.
-- because the internal code for YELLOW is 2

-- and (2"*1)-1 <= 2 <= (2**2)-1

type TEMPERATURE is (FREEZING, COLD, MILD, WARM, HOT);
for TEMPERATURE use

(FREEZING => -10,
COLD => 0,

MILD => 10,
WARM => 20,

HOT f> 30);
-- The minimum size of TEMPERATURE is 6 bits
-- because with six bits we can represent signed
-- integers between -32 and 31.

Appendix F - Ada/300 Type Representation 4-5

F 4.1.3 Size of an Enumeration Type
When no size specification is applied to an enumeration type, the objects of
that type are represented as signed machine integers. The HP 9000 Series
300 Computer System provides 8-, 16-, and 32-bit integers, and the compiler
automatically selects the smallest signed machine integer that can hold
all of the internal codes of the enumeration type. Thus, the default size
for enumeration types with 128 or less elements is 8 bits, the default size
for enumeration types with 129 to 32768 elements is 16 bits. Because this
implementation does not support enumeration types with more than 32768
elements, a size specification or enumeration representation clause must be used
for enumeration types that use a 32-bit representation.

When a size specification is applied to an enumeration type, this enumeration
type and all of its subtypes have the size specified by the length clause. The
size specification must specify a value greater than or equal to the minimum
size of the type. Note that if the size specification specifies the minimum size
and none of the internal codes are negative integers, the internal representation
will be that of an unsigned type. Thus, when using a size specification of eight
bits, you can have up to 256 elements in the enumeration type.

If the enumeration type is used as a component type in an array or
record definition that is further constrained by a pragma PACK or a record
representation clause, the size of this component will be determined by the
pragma PACK or the record representation clause. This allows the array or
record type to temporarily override any size specification that may have
applied to the enumeration type.

The Ada/300 compiler provides a complete implementation of size
specifications. Nevertheless, because enumeration values are coded using
integers, the specified length cannot be greater than 32 bits.

F 4.1.4 Alignment of an Enumeration Type

I An enumeration type is byte-aligned if the size of the type is less than or equal
to eight bits; otherwise it is word aligned. Word alignment is 2-byte or 16-bit
aligned.

4-6 Type Representation Appendix F - Ada/300

F 4.2 Integer Types

F 4.2.1 Predefined Integer Types

The HP 9000 Series 300 Computer System provides these three predefined
integer types:

type SHORTSHORTINTEGER
is range -(2**7) .. (2**7)-1; -- 8-bit signed

type SHORT-INTEGER
is range -(2**15) .. (2**15)-l; -- 16-bit signed

type INTEGER
is range -(2**31) .. (2**31)-l; -- 32-bit signed

An integer type declared by a declaration of the form

type T is range L .. U;

is implicitly derived from a predefined integer type. The compiler
automatically selects the smallest predefined integer type whose range contains
the values L to U, inclusive.

F 4.2.2 Internal Codes of Integer Values

The internal codes for integer values are represented using the two's
complement binary method. The compiler does not represent integer values
using any kind of a bias representation. Thus, one internal code will always
represent the same literal value for any Ada integer type.

Appendix F - Ada/300 Type Representation 4-7

F 4.2.3 Minimum Size of an Integer Type or Subtype

The minimum size of an integer subtype is the minimum number of bits
necessary for representing the internal codes of the subtype.

A static subtype of a null range has a minimum size of one. Otherwise, define m
and M to be the smallest and largest values for the internal codes values of the
subtype.

The minimum size L is determined as follows:

Value of m Calculation of L - Representation
smallest positive integer such that:

m >= 0 M <= (2**L) - I Unsigned

rm < 0 -(2**(L -1)) <= m and M <= (2**(L -I))- I Signed two's complement

4.8 Type Representation Appendix F - Ada/300

Example

type MYINT is range 0 .. 31;
-- The minimum size of MY.INT is 5 bits using
-- an unsigned representation

subtype SOMEINT is MYINT range S .. 7;
-- The minimum size of SOMEINT is 3 bits.
-- The internal representation of 7 requires three
-- binary bits using an unsigned representation.

subtype DYNAMICINT is MYINT range L .. U;
-- Assuming that L and U are dynamic,
--(i.e. not known at compile time)
-- The minimum size of DYNAMICINT is the same as its base type,
-- MYINT, which is 5 bits.

type ALTINT is range -1 .. 16;
-- The minimum size of MYINT is 6 bits,
-- because using a 5-bit signed integer we
-- can only represent numbers in the range -16 .. 15
-- and using a 6-bit signed integer we
-- can represent numbers in the range -32 .. 31
-- Since we must represent 16 as well as -1 the
-- compiler must choose a 6-bit signed representation

Appendix F - Ada/300 Type Representation 4-9

F 4.2.4 Size of an Integer Type

The sizes of the predefined integer types SHORTSHORTINTEGER,
SHORT-INTEGER and INTEGER are 8, 16, and 32 bits, respectively.

When no size specification is applied to an integer type, the default size is that
of the predefined integer type from which it derives, directly or indirectly.

Example

type S is range 80 .. 100;
-- Type S is derived from SHORTSHORTINTEGER
-- its default size is 8 bits.

type M is range 0 .. 255;

-- Type M is derived from SHORT.INTEGER

-- its default size is 16 bits.

type Z is new M range 80 .. 100;
-- Type Z is indirectly derived from SHORT-INTEGER
-- its default size is 16 bits.

type L is range 0 .. 99999;

-- Type L is derived from INTEGER
-- its default size is 32 bits.

type UNSIGNED-BYTE is range 0 .. (2**8)-1;
for UNSIGNEDBYTE'SIZE use 8;
-- Type UNSIGNED-BYTE is derived from SHORT-INTEGER
-- its actual size is 8 bits.

type UNSIGNED-WORD is range 0 .. (2**16)-1;
for UNSIGNEDWORD'SIZE use 16;
-- Type UNSIGNED-WORD is derived from INTEGER
-- its actual size is 16 bits.

4-10 Type Representatfon Appendix F - Ada/300

When a size specification is applied to an integer type, this integer type
and all of its subtypes have the size specified by the length clause. The size
specification must specify a value greater than or equal to the minimum size of
the type. If the size specification specifies that the minimum size and the lower
bound of the range is not negative, the internal representation will be unsigned.
Thus, when using a size specification of eight bits, you can represent an integer
range from 0 to 255.

Using a size specification on an integer type allows you to define unsigned
machine integer types. The compiler fully supports unsigned machine integer
types that are either 8 or 16 bits. The 8-bit unsigned machine integer type
is derived from the 16-bit predefined type SHORT-INTEGER. Using the 8-bit
unsigned integer type in an expression results in it being converted to the
predefined 16-bit signed type for use in the expression. This same method also
applies to the 16-bit unsigned machine integer type, such that using the type in
an expression results in a conversion to the predefined 32-bit signed type.

However, Ada does not allow the definition of an unsigned integer type that
has a greater range than the largest predefined integer type. INTEGER is the
largest predefined integer type and is represented as a 32-bit signed machine
integer. Because the Ada language requires predefined integer types to be
symmetric about zero (Ada RM, section 3.5.4), it is not possible to define a
32-bit unsigned machine integer type because the largest predefined integer
type, INTEGER, is also a 32-bit type.

If the integer type is used as a component type in an array or record definition
that is further constrained by a pragma PACK or record representation clause,
the size of this component will be determined by the pragma PACK or record
representation clause. This allows the array or record type to temporarily
override any size specification that may have applied to the integer type.

The Ada/300 compiler provides a complete implementation of size
specifications. Nevertheless, because integers are coded using machine integers, I
the specified length cannot be greater than 32 bits.

Appendix F - Ada/300 Type Representation 4-11

F 4.2.5 Alignment of an Integer Type

I An integer type is byte-aligned if the size of the type is less than or equal to
eight bits; otherwise, it is word aligned. Word alignment is 2-btye or 16-bit
aligned.

4-12 Type Rptesentation Appendix F - Ada/300

F 4.3 Floating Point Types

F 4.3.1 Predefined Floating Point Types
The HP 9000 Series 300 Computer System provides two predefined floating
point types.

type FLOAT is digits 6 range
-(2.0 - 2.0**(-23))*(2.0**127)
+(2.0 - 2.0**(-23))*(2.0**127);

-- This expresses the decimal range -3.40282E+38 .. 3.40282E+38

type LONG-FLOAT is digits 15 range
-(2.0 - 2.0**(-52))*(2.0**1023)
+(2.0 - 2.0**(-52))*(2.0**1023);

-- This expresses the decimal range:
-- -1.797693134862315E+308 .. +1.797693134862315E+308

A 1loating point type declared by a declaration of the form

type T is digits D [range L .. U];

is implicitly derived from a predefined floating point type. The compiler
automatically selects the smaller of the two predefined floating point types.
FLOAT or LONGFLOAT. whose number of digits is greater than or equal to D and
that contains the values L to U inclusive.

F 4.3.2 Internal Codes of Floating Point Values

The internal codes for floating point values are represented using the IEEE
standard formats for single precision and double precision floats.

The values of the predefined type FLOAT are represented using the single
precision float format. The values of the predefined type LONG-FLOAT are
represented using the double precision float format. The values of any other
floating point type are represented in the same way as the values of the
predefined type from which it derives, directly or indirectly.

Appendix F - Ada/300 Type Representation 4-13

The internal representation of the IEEE floating point types can be described
by the following Ada specification

type BIT is range 0..1;
for BIT'SIZE use 1;

-- IEEE representation for 32-bit FLOAT type

FLOAT32-BIAS : constant := 2**7-1;

type FLOAT32-EXPONENT is range 0 .. 2**8-1;
for FLOAT32_EXPONENT'SIZE use 8;

type FLOAT32-MANTISSA is array(O..22) of BIT;
for FLOAT32_MANTISSA'SIZE use 23;

type FLOAT32-REC is
record

SIGN-BIT BIT;
EXPONENT FLOAT32_EXPONENT;
MANTISSA FLOAT32.MANTISSA;

end record;
for FLOAT32-REC use
record

SIGN-BIT at 0 range 0 .. 0;
EXPONENT at 0 range 1 .. 8;
MANTISSA at 0 range 9 .. 31;

end record;
for FLOAT32_REC'SIZE use 32;

-- IEEE representation for 64-bit FLOAT type

FLOAT64-BIAS : constant := 2**10-1;

type FLOAT64-EXPONENT is range 0 .. 2**11-1;

4-14 Type Representation Appendix F - Ada/300

for FLOAT64-EXPONENT'SIZE use 11;

type FLOAT64-MANTISSA is arrayCO. .51) of BIT;
for FLOAT64-MANTISSA'SIZE use 52;

type FLOAT64-.REC is
record

SIGN-.BIT BIT;
EXPONENT FLOAT64-EXPONENT;
MANTISSA FLOAT64-MANTISSA;

end record;
f or FLOAT64-REC use

record
SIGN-BIT at 0 range 0 .. 0;
EYPONENT at 0 range 1 .. 11;
MANTISSA at 0 range 12 .. 63;

end record;,
for FLOAT64-RPEC'SIZE use 64;

Appendix F - Ada/ 300 Type Representation 4.15

F 4.3.3 Minimum Size of a Floating Point Type or Subtype

The minimum size of a floating point subtype is 32 bits if its base type is
FLOAT or a type derived from FLOAT; it is 64 bits if its base type is LONG-FLOAT
or a type derived from LONG-FLOAT.

F 4.3.4 Size of a Floating Point Type

The only size that can be specified for a floating point type in a size
specification is its default size (32 or 64 bits).

F 4.3.5 Alignment of a Floating Point Type

A floating point type is always word aligned. Word alignment is 2-byte or
16-bit aligned.

4-16 Type Representation Appendix F - Ada/300

F 4.4 Fixed Point Types

F 4.4.1 Predefined Fixed Point Types

To implement fixed point types, the HP 9000 Series 300 Computer System
provides a set of three anonymous predefined fixed point types of this form: I

type SHORT-FIXED is delta D range
-(2 *7)*SMALL .. +((2**7)-1)*SMALL;

for SHORT-FIXED 'SMALL use SMALL;
for SHORT-FIXED 'SIZE use 8;

type FIXED is delta D range
-(2**15)*SMALL .. +((2**15)-1)*SMALL;

for FIXED'SMALL use SMALL;
for FIXED'SIZE use 16;

type LONG-FIXED is delta D range
-(2**31)oSMALL .. +((2**31)-I)*SMALL;

for LONGFIXED'SMALL use SMALL;
for LONGFIXED'SIZE use 32;

-- In the above type definitions SMALL is the largest
-- power of two that is less than or equal to D.

A fixed point type declared by a declaration of the form

type T is delta D range L .. U;

is implicitly derived from one of the predefined fixed point types.

Appendix F - Ada/300 Type Representation 4-17

The compiler automatically selects the smallest predefined fixed point type
using the following method:

" Choose the largest power of twc, that is not greater than the value specified
for the delta to use as SMALL.

" Determine the r- iges for the three predefinpd fixed point types using the
value obtained for SMALL.

" Select the smallest predefined fixed point type whose range contains the
values L+SMALL to U-SMALL, inclusive.

Using the above method, it is possible that the values L and U lie outside the
ran-ge of the compiler-selected fixed point type. For this reason, the values used
in a fixed point range constraint should be expressed as follows, to guarantee
that the values of L and U are representable in the resulting fixed point type:

type ANY-FIXED is delta D range L-D .. U+D;
-- The values of L and U are guaranteed to be
-- representable in the type ANY-FIXED.

F 4.4.2 Internal Codes of Fixed Point Values

The internal codes for fixed point -alues are represented using the two's
complement binary method as integer multip!r.s of 'SMALL. The value of a fixed
point object is 'SMALL multiplied by the stored internal code.

7 4.4.3 Small of a Fixed Point Type

The A da/300 compiler requires that the value assigned to ' SMALL is always
a power of two. Ada/300 does not support a length clause that specifies a
'SMALL for a fixed point type tha. is not a power of two.

If a fixed point type does not have a length clause that specifies the value to
use for 'SMALL, the value of 'SMALL is determined by the compiler according to
the rules in the Ada RM, sectior J.5.9.

4-18 Type Representation Appendix F - Ada/300

F 4.4.4 Minimum Size of a Fixed Point Type or Subtype

The minimum size of a fixed point subtype is the minimum number of binary
digits necessary to represent the values in the range of the subtype using the
'SMALL of the base type.

A static subtype of a null range has a minimum size of one. Otherwise, define
s and S to be the boands of the subtype, define m and M to be the smallest
and greatest model numbers of the base type, and let i and I be the integer
representations for the model numbers m and M. The following a-xioms hold:

S <= i < M <= S

m - T'BASE'SMALL <= s
M + T'BASE'SMALL >= S
M = T'BASE'LARGE
i = m / T'BASE'SMALL
I = M / T'BASE'SMALL

The minimum size L is determined as follows:

Value of 1 Calculation of L - Representation

smallest positive integer such that:

>= 0 I <= (2**L) - 1 Unsigned

1 < 0 -(2**(L - 1)) <= i and I <= (2**(L -1))-I Signed two's complement

Appendix F Ada/300 Type Representation 4-19

Example

type UF is delta 0.1 range 0.0 .. 100.0;
-- The value used for 'SMALL is 0.0625

-- The minimum size of UF is 11 bits,

-- seven bits before the decimal point

-- four bits after the decimal point

-- and no bits for the sign.

type SF is delta 16.0 range -400.0 .. 400.0;

-- The minimum size of SF is 6 bits,

-- nine bits to represent the range 0 to 511
-- less four bits by the implied decimal point of 16.0

-- and one bit for the sign.

subtype UFS is UF delta 4.0 range 0.0 .. 31.0;

-- The minimum size of UFS is 9 bits,

-- five bits to represent the range 0 to 31

-- four bits for the small of 0.0625 from the base type
-- and no bits for the sign.

subtype SFD is SF range X .. Y;

-- Assuming that X and Y are not static, the minimum size

-- of SFD is 6 bits. (the same as its base type)

4-20 Type Representation Appendix F - Ads/300

F 4.4.5 Size of a Fixed Point Type

The sizes of the anonymous predefined fixed point types SHORT-FIXED, FIXED,
and LONG-FIXED are 8, 16, and 32 bits, respectively.

When no size specification is applied to a fixed point type, the default size
is that of the predefined fixed point type from which it derives, directly or
indirectly.

Example

type Q is delta 0.01 range 0.00 .. 1.00;
-- Type Q is derived from an 8-bit predefined
-- fixed point type, its default size is 8 bits.

type R is delta 0.01 range 0.00 .. 2.00;
-- Type R is derived from a 16-bit predefined
-- fixed point type, its default size is 16 bits.

type S is new R range 0.00 .. 1.00;
-- Type S is indirectly derived from a 16-bit predefined
-- fixed point type, its default size is 16 bits.

type SF is delta 16.0 range -400.0 .. 400.0;
for SF'SIZE use 6;
-- Type SF is derived from an 8-bit predefined
-- fixed point type, its actual size is 6 bits.

type UF is delta 0.1 range 0.0 .. 100.0;
for UF'SIZE use 11;
-- Type UF is derived from a 16-bit predefined
-- fixed point type, its actual size is 11 bits.
-- The value used for 'SMALL is 0.0625

Appendix F - Ada/300 Type Representation 4-21

When a size specification is applied to a fixed point type, this fixed point type
and all of its subtypes have the size specified by the length clause. The size
specification must specify a value greater than or equal to the minimum size
of the type. If the size specification specifies the minimum size and the lower
bound of the range is not negative, the internal representation will be that of
an unsigned type.

If the fixed point type is used as a component type in an array or
record definition that is further constrained by a pragma PACK or record
representation clause, the size of this component will be determined by the
pragma PACK or record representation clause. This allows the array or record
type to temporarily override any size specification that may have applied to the
fixed point type.

The Ada/300 compiler provides a complete implementation of size
specifications. Nevertheless, because fixed point objects are coded using
machine integers, the specified length cannot be greater than 32 bits.

F 4.4.6 Alignment of a Fixed Point Type

IA fixed point type is byte-aligned if the size of the type is less than or equal
to eight bits; otherwise it is word-aligned. Word alignment is 2-byte or 16-bit
aligned.

4-22 Type Representation Appendix F - Ada/300

F 4.5 Access Types

F 4.5.1 Internal Codes of Access Values

In the program generated by the compiler, access values are represented
using 32-bit machine addresses. The predefined generic function
UNCHECKEDCONVERSION can be used to convert the internal representation
of an access value into any other 32-bit type. You can also use
UNCHECKED_-CONVERSION to assign any 32-bit value into an access value. When
interfacing with externally supplied data structures, it may be necessary to use
the generic function UNCHECKED-.CONVERSION to convert a value of the type
SYSTEM. ADDRESS into the internal representation of an access value. Programs
that use UNCHECKED-CONVERSION in this manner cannot be considered portable
across different implementations of Ada.

F 4.5.2 Collection Size for Access Types

A length clause that specifies the collection size is allowed for an access type.
This collection size applies to all objects of this type and any type derived
from this type, as well as any and all subtypes of these types. Thus, a length
clause that specifies the collection size is only allowed for the original base type
definition and not for any subtype or derived type of the base type.

When no specification of collection size applies to an access type, the attribute
STORAGE-SIZE returns zero. In this case, the compiler will dynamically manage
the storage for the access type and it is not possible to determine directly the
amount of storage available in the collection for the access type.

Appendix F - Ada/300 Type Representation 4-23

The recommended format of a collection size length clause is:

UNUM: constant : 50; -- The maximum number
-- of elements needed

USIZE: constant U size; -- Subsitute U'SIZE here

-- The constant U.SIZE should also be:

-- 1. a multiple of two
-- 2. greater than or equal to four

-- Additionally, the type U must have a static size

type P is access U; -- Type U is any
-- non-dynamic user defined type.
for P'STORAGESIZE use (USIZE*UNUM)+4;

In the above example we have specified a collection size that is large enough to
contain 50 objects of the type U. There is a constant overhead of four bytes for
each storage collection. Because the collection manager rounds the element size
to be a multiple of two that is four or greater, you must ensure that USIZE
is the smallest multiple of two that is greater than or equal to U'SIZE and is
greater than or equal to four.

You can also provide a length clause that specifies the collection size for a type
that has a dynamic size. It is only possible to specify an upper limit on the
amount of memory that can be used by all instances of objects that are of this
dynamic type. Because the size is dynamic, you cannot specify the number of
elements in the collection.

4-24 Type Representation Appendix F - Ada/300

F 4.5.3 Minimum Size of an Access Type or Subtype

The minimum size of an access type is always 32 bits.

F 4.5.4 Size of an Access Type

The size of an access type is 32 bits, the same as its minimum size.

The only size that cap be specified for an access type in a size specification
clause is its usual size (32 bits).

F 4.5.5 Alignment of an Access Type

An access type is always word aligned. Word alignment is 2-byte or 16-bit
aligned. I

Appendix F - Ada/300 Type Representation 4.25

F 4.6 Task Types

F 4.6.1 Internal Codes of Task Values

In the program generated by the compiler, task type objects are represented
using 32-bit machine addresses.

F 4.6.2 Storage for a Task Activation

The value returned by the attribute 'STORAGE-SIZE is determined as follows:

" For a task type without a length clause and using the default storage size at
bind time, the attribute 'STORAGE-SIZE returns the default task storage size.

" For a task type without a length clause and using the bind-time option
-Wb,-t, nnn to set the task storage size, the attribute STORAGE.SIZE returns
nnn x 1024.

" For a task type with a length clause, the attribute 'STORAGE-SIZE returns
the value used in the length clause.

When a length clause is used on a task type, it specifies the number of
storage units reserved for an activation of a task of a type (see Ada RM,
section 13.2(10)). This space includes both the task stack space and a private
data section of approximately 3600 bytes. The private data section contains
the Task Control Block that has information used by the Ada runtime to
manage the task. The size specified in the length clause must be greater than
this minimum size or else a TASKING-ERROR exception will be generated
during the elaboration of the activation 9f a task object of this type. The
stack space requirements for the task object must also be considered. If the
stack space is insufficient during the execution of the task, the exception
STORAGE-ERROR will be raised and the task object will be terminated.

4-26 Type Representation Appendix F - Ada/300

The following example sets the storage usage for a task type that needs 4K
bytes of stack space.

task type MY-.TASK..TYPE is
entry START;
entry STOP;

end MY-.TASK..TYPE;

for MY..TASK..TYPE use 3600 + (4 * 1024); -- Allocates a 4K stack.

Appendix F - Ada/300 Type Representation 4-27

F 4.6.3 Minimum Size of a Task Stack

The task object will use 150 bytes of stack space in the first stack frame. Some
additional stack space is required to make calls into the Ada runtime. The
smallest value that can be safely used for a task with minimal stack needs is
approximately 400 bytes. If the task object has local variables or if it makes
calls to other subprograms, the stack storage requirements will be larger. The
actual amount of stack space used by a task will need to be determined by trial
and error. If a tasking program raises STORAGE-ERROR or behaves abnormally,
you should increase the stack space for the tasks.

F 4.6.4 Limitation on Length Clause for Derived Task Types

This storage size applies to all task objects of this type and any task type
derived from this type. Thus, a length clause that specifies the storage size is
only allowed for the original task type definition and not for any derived task
type.

F 4.6.5 Minimum Size of a Task Type or Subtype

The minimum size of a task type is always 32 bits.

F 4.6.6 Size of a Task Type

The size of a task type is 32 bits, the same as its minimum size.

The only size that can be specified for a task type in a size specification clause
is its usual size (32 bits).

F 4.6.7 Alignment of a Task Type

I A task type is always word aligned. Word alignment is 2-byte or 16-bit aligned.

4-28 Type Representation Appendix F - Ada/300

F 4.7 Array Types

F 4.7.1 Layout of an Array

Each array is allocated in a contiguous area of storage units. All the
components have the same size. A gap may exist between two consecutive
components (and after the last component). All the gaps are the same size, as
shown in figure 4-1.

Component Gap Component Gap Component Gap

Figure 4-1. Layout of an Array

F 4.7.2 Array component size and pragma PACK

If the array is not packed, the size of each component is the size of the
component type. This size is the default size of the component type unless a
size specification applies to the component type.

If the array is packed and the array component type is neither a record nor
array type, the size of the component is the minimum size of the component
type. The minimum size of the component type is used even if a size
specification applies to the component type.

Appendix F - Ada/300 Type Representation 4-29

Packing the array has no effect on the size of the components when the
component type is a record or array type.

Example

type A is array(1..8) of BOOLEAN;
-- The component size of A is the default size
-- of the type BOOLEAN: 8 bits.

type B is array (1..8) of BOOLEAN;
pragma PACK(B);
-- The component size of B is the minimum size
-- of the type BOOLEAN: 1 bit.

type DECIMAL-DIGIT is range 0..9;
-- The default size for DECIMAL-DIGIT is 8 bits
-- The minimum size for DECIMAL-DIGIT is 4 bits

type BCD-NOTPACKED is array(l..8) of DECIMAL-DIGIT;
-- The component size of BCDNOT-PACKED is the default
-- size of the type DECIMAL-DIGIT: 8 bits.

type BCD-PACKED is array(1..8) of DECIMALDIGIT;
pragma PACK(BCDPACKED);
-- The component size of BCD-PACKED is the minimum
-- size of the type DECIMAL-DIGIT: 4 bits.

F 4.7.3 Array Gap Size and Pragma PACK

If the array type is not packed and the component type is a record type
without a size specification clause, the compiler may choose a representation
for the array with a gap after each component. Inserting gaps optimizes access
to the array components. The size of the gap is chosen so that each array
component begins on an alignment boundary.

If the array type is packed, the compiler will generally not insert a gap between
the array components. In such cases, access to array components can be slower

4-30 Type Representation Appendix F - Ada/300

because the array components will not always be aligned correctly. However,
in the specific case where the component type is a record and the record has
a record representation clause specifying an alignment, the alignment will be
honored and gaps may be inserted in the packed array type.

Example

type R is
record

K INTEGER; -- Type Integer is word aligned,

B BOOLEAN; -- Type Boolean is byte aligned.
end record;

-- Record type R is word aligned. Its size is 40 bits.

type A is array(1. 10) of R;
-- A gap of one byte is inserted after each array component in
-- order to respect the alignment of type R.
-- The size of array type A is 480 bits.

type PA is array(l..10) of R;
pragma PACK(PA);

-- There are no gaps in an array of type PA because
-- of the pragma PACK statement on type PA.
-- The size of array type PA is 400 bits.

type NR is new R;
for NR'SIZE use 40;

type B is array(l..10) of NR;
-- There are no gaps in an array of type B because
-- of the size specification clause on type NR.
-- The size of array type B is 400 bits.

Appendix F - Ada/300 Type Representation 4.31

F 4.7.4 Size of an Array Type or Subtype

The size of an array subtype is obtained by multiplying the number of its
components by the sum of the size of the component and the size of the gap.

The size of an array type or subtype cannot be computed at compile time if
any of the following are true:

" If the array has non-static constraints or if it is an unconstrained type with
non-static index subtypes (because the number of components can then only
be determined at run time)

* If the components are records or arrays and their constraints or the
constraints of their subcomponents are not static (because the size of the
components and the size of the gaps can then only be determined at run
timc). Pragma PACK is not allowed in this case.

As indicated above, the effect of a pragma PACK on an array type is to
suppress the gaps and to reduce the size of the components, if possible. The
consequence of packing an an n:y type is thus to reduce its size.

I Array packing is fully implemented by the Ada/300 compiler with this
limitation: if the components of an array type are records or arrays and their
constraints or the constraints of their subcomponents are not static, the
compiler ignores any pragma PACK statement applied to the array type and
issues a warning message.

A size specification applied to an array type has no effect. The only size that
the compiler wil -cept in such a length clause is the usual size. Nevertheless,
such a lergth clause can be used to verify that the layout of an array is as
expected by the application.

4-32 Type Representation Appendix F Ada/300

F 4.7.5 Alignment of an Array Type
If no pragma PACK applies to an array type and no size specification applies to
the component type, the array type is word aligned if the component type is I
word aligned. Otherwise, it is byte aligned.

If a pragma PACK applies to an array type or if a size specification applies to
the component type (so that there are no gaps), the alignment of the array
type is as given in table 4-2.

Table 4.2. Alignment and Pragma PACK

Component Displacement is Displacement is Displacement is
Alignment on an Even Byte on an Odd Byte on a Bit

word word byte bit

byte byte byte bit

bit bit bit bit

Appendix F - Ada/300 Type Representation 4-33

F 4.8 Record Types
Syntax (record representation clause)

for record-type-name use
record [alignment-clause]

[component-clause]

end record;

Syntax (alignment clause)

at mod static-expression

Syntax (component clause)

record-component-name at static-expression
range static-expression .. static-expression

F 4.8.1 Layout of a Record

A record is allocated in a contiguous area of storage units. The size of a record
depends on the size of its components and the size of any gaps between the
components. The compiler may add additional components to the record.
These components are called implicit components.

The positions and sizes of the components of a record type object can be
controlled using a record representation clause as described in the Ada RM,
section 13.4. If the record contains compiler-generated implicit components,
their position also can be controlled using the proper component clause. For
more details, see "Implicit Components" in section 4.8. In the implementation
for the HP 9000 Series 300 Computer System, there is no restriction on the
position that can be specified for a component of a record. If the component is
not a record or an array, its size can be any size from the minimum size to the
default size of its base type. If the component is a record or an array, its size
must be the size of its base type.

4-34 Type Representation Appendix F - Ara/300

Example (Record with a representation clause):

typa TRACE.KIND is (None, Change.ofFlow,
Any-Instruction, Reserved);

type SYSTEM.STATE is (User, Supervisor);

type SUPERVISOR-STATE is (Interrupt, Master);

type INTERRUPT-PRIORITY is range 0..7;

type CONDITION-CODE is new BOOLEAN;
for CONDITIONCODE'SIZE use 1;

SYSTEM-BYTE constant 0;
USER-BYTE constant 1;

type STATUS-REGISTER is
record

T TRACE-KIND;
S SYSTEM-STATE;
M SUPERVISOR-STATE;
I INTERRUPT-PRIORITY;
X CONDITION-CODE;
N CONDITION-CODE;
Z CONDITION-CODE;
V CONDITION.CODE;
C CONDITION-CODE;

end record;

-- This type can be used to map the status register of
-- the MC68020 microprocessor.

for STATUS-REGISTER use
record at mod 2;

T at SYSTEM-BYTE range 0..1;
S at SYSTEM.BYTE range 2..2;
M at SYSTEM-BYTE range 3..3;
I at SYSTEM-BYTE range 5. .7;

Appendix F - Ada/300 Type Representation 4-35

X at USER-BYTE range 3..3;
N at USER.BYTE range 4..4;
Z at USER-BYTE range 5..5;
V at USER-BYTE range 6..6;
C at USER.BYTE range 7..7;

end record;

In the above example, the record representation clause explicitly tells the
compiler both the position and size for each of the record components. The

I optional alignment clause specifies a 2-byte alignment for this record. In this
example every component has a corresponding component clause, although
it is not required. If one is not spplied, the choice of the storage place for
that component is left to the compiler. If component clauses are given for all
components, including any implicit components, the record representation
clause completely specifies the representation of the record type and will be
obeyed exactly by the compiler.

F 4.8.2 Bit Ordering in a Component Clause

The HP Ada compiler for the HP 9000 Series 300 Computer System numbers
the bits in a component clause starting from the most significant bit. Thus, bit
zero represents the most significant bit of an 8-bit byte and bit seven represents
the least significant bit of the byte. Notice that this ordering is different from
the bit ordering used in the Motorola MC68020 User's Guide, which numbers
the bits in the reverse order.

4-36 Type Representation Appendix F - Ada/300

F 4.8.3 Value used for SYSTEM.STORAGEUNIT

The smallest directly addressable unit on the HP 9000 Series 300 Computer I
System is the 8-bit byte. This is the value used for SYSTEM.STORAGE-UNIT
that is implicitly used in a component clause. A component clause specifies an
offset and a bit range. The offset in a component clause is measured in units of I
SYSTEM.STORAGE-UNIT, which for the HP 9000 Series 300 Computer System is
an 8-bit byte.

The compiler determines the actual bit address for a record component by
combining the byte offset with the bit range. There are several different
ways to refer to the same bit address. In the following example, each of the
component clauses refer to the same bit address.

Example

COMPONENT at 0 range 16 .. 18;
COMPONENT at 1 range 8 .. 10;
COMPONENT at 2 range 0 .. 2;

F 4.8.4 Compiler-Chosen Record Layout

If no component clause applies to a component of a record, its size is the size
of the base type. Its location in the record layout is chosen by the compiler so
as to optimize access to the component. That is, each component of a record
follows the natural alignment of the component's base type. Moreover, the
compiler chooses the position of the components to reduce the number of gaps
or holes in the record and additionally to reduce the size of the record.

Because of these optimizations, there is no connection between the order of
the components in a record type declaration and the positions chosen by the
compiler for the components in a record object.

Appendix F - Ada/300 Type Representation 4.37

F 4.8.5 Change in Representation

It is possible to apply a record representation clause to a derived record type.
This allows a record type to possibly have several alternative representations.
Thus, the compiler fully supports the "Change in Representation" as described
in the Ada RM, section 13.6.

F 4.8.6 Implicit Components

In some circumstances, access to a record object or to a component of a
record object involves computing information that only depends on the
discriminant values or on a value that is known only at run time. To avoid
unnecessary recomputation, the compiler reserves space in the record to store
this information. The compiler will update this information whenever a
discriminant on which it depends changes. The compiler uses this information
whenever the component that depends on this information is accessed. This
information is stored in special components called implicit components. There
are three different kinds of implicit components:

" Components that contain an offset value.

" Components that contain information about the record object.

" Components that are descriptors.

Implicit components that contain an offset value from the beginning of the
record are used to access indirect components. Implicit components of this
kind are called offset components. The compiler introduces implicit offset
components whenever a record contains indirect components. These implicit
components are considered to be declared before any variant part in the record
type definition. Implicit components of this kind cannot be suppressed by
using the pragma IMPROVE.

Implicit components that contain information about the record object are used
when the record object or component of a record object is accessed. Implicit
components of this kind aie used to make references to the record object
or to make record components more efficient. These implicit components
are considered to be declared before any variant part in the record type
definition. There are two implicit components of this kind: RECORD-SIZE and

4-38 Type Representation Appendix F - Ada/300

VARIANT-INDEX. Implicit components of this kind can be suppressed by using
the pragma IMPROVE.

The third kind of implicit components are descriptors that are used when
accessing a record component. The implicit component exists whenever the
record has an array or record component that depends on a discriminant of
the record. An implicit component of this kind is considered to be declared
immediately before the record component it is associated with. There are two
implicit components of this kind: ARRAY-DESCRIPTOR and RECORDDESCRIPTOR.
Implicit components of this kind cannot be suppressed by using the pragma
IMPROVE.

Note The -S option (Assembly Option) to the ada(1) command is
useful for finding out what implicit components are associated
with the record type. This option will detail the exact
representation for all record types defined in a compilation unit.

Appendix F - Ada/300 Type Representation 4-39

F 4.8.7 Indirect Components

If the offset of a component cannot be computed at compile time, the compiler
will reserve space in the record for the computed offset. The compiler computes
the value to be stored in this offset at run time. A component that depends on
a run time computed offset is said to be an indirect component, while other
components are said to be direct.

A pictorial example of a record layout with an indirect component is shown in
figure 4-2.

Record Component Name Size of Component
Offset

0 Component A 16 bit%
2 Offset for Component D 16 bit%
4 Component 8 32 bits
6
8 Component C (Size known at run time>
10
12
14
16

Storage for (Size known at run time)
Component D

Figure 4-2. Record layout with an Indirect Component

In the above example, the component D has an offset that cannot be computed
at compile time. The compiler then will reserve space in the record to store the
computed offset and will store this offset at run time. The other components
(A, B, and C) are all direct components because their offsets can all be
computed at compile time.

4-40 Type Representation Appendix F - Ada/300

F 4.8.8 Dynamic Components

If a record component is a record or an array, the size of the component may

need to be computed at run time and may depend on the discriminants of the

record. These components are called dynamic components.

Example (Record with dynamic components):

type URNG is range 0..255;

type UCARRAY is array(URNG range <>) of INTEGER;

-- The type GRAPH has two dynamic components: X and Y.

type GRAPH (X.LEN, YLEN: URNG) is

record
X UCARRAY(1., X.LEN); -- The size of X depends on XLEN

Y : UCARRAY(1 . YLEN); -- The size of Y depends on YLEN

end record;

type DEVICE is (SCREEN, PRINTER);

type COLOR is (GREEN, RED, BLUE);

Q : URNG;

Appendix F - Ada/300 Type Representation 4.41

-- The type PICTURE has two dynamic components: R and T.

type PICTURE (N : URNG; D : DEVICE) is
record

R : GRAPH(N,N); -- The size of R depends on N
T GRAPH(Q,Q); -- The size of T depends on Q
case D is

when SCREEN => C : COLOR;
when PRINTER => null;

end case;
end record;

Any component that is placed after a dynamic component has an offset
that cannot be evaluated at compile time and is thus indirect. To minimize
the number of indirect components, the compiler groups the dynamic
components and places them at the end of the record. Due to this strategy,
the only indirect components are dynamic components. However, all dynamic
components are not necessarily indirect. The compiler can usually compute the
offset of the first dynamic component and thus it becomes a direct component.
Any additional dynamic components are then indirect components.

4-42 Type Representation Appendix F - Ada/300

A pictorial example of the data layout for the record type PICTURE is shown in
figure 4-3.

Record D = SCREEN D z PRINTER
Offset N x (ANY> N z (ANY)

0 T'OFFSET T'OFFSET
2 R"OFFSET R'OFFSET
4 7 N N
6 R"RECORDDESCRIPTOR R'RECORD DESCRIPTOR
8 D D

9 PICTURE'VARIANTINDEX PICTURE'VARIANT INDEX
10 C Start of R

11 (GAP> ...
12 Start of R ...

Start of T
Start of T

Figure 4-3. Example of a Data Layout

Appendix F - Ada/300 Type Representation 4-43

F 4.8.9 Representation of the Offset of an Indirect Component

The offset of an indirect component is always expressed in storage units, which
for the HP 9000 Series 300 Computer System are bytes. The space that the
compiler reserves for the offset of an indirect component must be large enough
to store the maximum potential offset. The compiler will choose the size of
an offset component to be either an 8-, 16-, or 32-bit object. It is possible
to further reduce the size in bits of this component by specifying it in a
component clause. -

If C is the name of an indirect component, the offset of this component can
be denoted in a component clause by the implementation-generated name
C'OFFSET.

Example (Record representation clause for the type GRAPH)

for GRAPH use
record

XLEN at 0 range 0..7;
YLEN at I range 0..7;
X'OFFSET at 2 range 0..15;

end record;

-- The bit range range for the implicit component
-- X'OFFSET could have been specified as 0..11
-- This would make access to X much slower

In this example we have used a component clause to specify the location of
an offset for a dynamic component. In this example the compiler will choose
Y to be the first dynamic component and as such it will have a static offset.
The component X will be placed immediately after the end of component Y by
the compiler at run time. At run time the compiler will store the offset of this
location in the field X'OFFSET. Any references to X will have additional code to
compute the run time address of X using the X 'OFFSET field. References to Y
will be direct references.

4-44 Type Representation Appendix F - Ada/300

F 4.8.10 The Implicit Component RECORD-SIZE

This implicit component is created by the compiler whenever a record with
discriminants has a variant part and the discriminant that defines the variant
part has a default expression (that is, a record type that possibly could be
unconstrained.) The component 'RECORD-SIZE contains the size of the storage
space required to represent the current variant of the record object. Note that
the actual storage allocated for the record object may be more than this.

The value of a RECORD-SIZE component may denote a number of bits or a
number of storage units (bytes). In most cases it denotes a number of storage
units (bytes), but if any component clause specifies that a component of the
record type has an offset or a size that cannot be expressed using storage units.
the value designates a number of bits.

The implicit component RECORD-SIZE must be large enough to store the
maximum size that the record type can attain. The compiler evaluates this
size, calls it MS, and considers the type of RECORD.SIZE to be an anonymous
integer type whose range is 0 . . MS.

If R is the name of a record type, this implicit component can be denoted in a
component clause by the implementation-generated name R'RECORDSIZE.

F 4.8.11 The Implicit Component VARIANTINDEX

This implicit component is created by the compiler whenever the record type
has a variant part. It indicates the set of components that are present in a
record object. It is used when a discriminant check is to be done.

Within a variant part of a record type, the compiler numbers component lists
that themselves do not contain a variant paft. These numbers are the possible
values for the implicit component VARIANT-INDEX. The compiler uses this
number to determine which components of the variant record are currently
valid.

Appendix F - Ada/300 Type Representation 4-45

Example (Record with a variant part):

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION(KIND VEHICLE := CAR) is
record

SPEED : INTEGER;
case KIND is

when AIRCRAFT I CAR =>
WHEELS : INTEGER;

case KIND is
when AIRCRAFT => -- VARIANT-INDEX is 1

WINGSPAN : INTEGER;
when others => -- VARIANT-INDEX is 2

null;

end case;
when BOAT => -- VARIANT-INDEX is 3

STEAM : BOOLEAN;
when ROCKET => -- VARIANT-INDEX is 4

STAGES : INTEGER;
end case;

end record;

In the above example, the value of the variant index indicates which of the
components are present in the record object; these components are summarized
in the table below.

Variant Index Legal Components

1 KIND, SPEED, WHEELS, WINGSPAN

2 KIhD, SPEED, WHEELS

3 KIND, SPEED, STEAN

4 KIND, SPEED. STAGES

4-46 Type Representation Appendix F - Ada/300

The implicit component VARIANT-INDEX must be large enough to store the
number of component lists that do not contain variant parts. The compiler
evaluates this size, calls it VS, and considers the type of VARIANT-INDEX to be
an anonymous integer type whose range is 0 .. VS.

If R is the name of a record type, this implicit component can be denoted in a
component clause by the implementation-generated name R' VARIANTINDEX.

F 4.8.12 The Implicit Component ARRAY-DESCRIPTOR

An implicit component of this kind is associated by the compiler with each
record component whose type is an array that has bounds that depend on a
discriminant of the record.

The structure and contents of the implicit component ARRAY.DESCRIPTOR are
not described in this manual. Nevertheless, if you are interested in specifying
the location of a component of this kind in a component clause, you can obtain
the size of the component by supplying the -S option (Assembly Option) to the
ada(1) command.

If C is the name of a record component that conforms to the above definition,
this implicit component can be denoted in a component clause by the
implementation-generated name C IARRAY-_DESCRIPTOR.

F 4.8.13 The Implicit Component RECORD-DESCRIPTOR

An implicit component of this kind may be associated by the compiler when a
record component is a record type that has components whose size depends on
a discriminant of the outer record.

The structure and content of the implicit component RECORDDESCRIPTOR are
not described in this manual. Nevertheless, if you are interested in specifying
the locntion of a component of this kind in a component clause, you can obtain
the size of the component by applying the -S option (Assembly Option) to the
ada(i) command.

Appendix F - Ada/300 Type Representation 4-47

If C is the name of a record component that conforms to the above definition,
this implicit component can be denoted in a component clause by the
implementation-generated name C' RECORD.DESCRIPTOR.

F 4.8.14 Suppression of Implicit Components

I Ada/300 provides the capability of suppressing the implicit components
RECORD-SIZE and VARIANT-INDEX from a record type. This can be done using
an implementation defined pragma called IMPROVE.

Syntax

pragma IMPROVE (TIME I SPACE , [ON =>] record-.type-.name);

The first argument specifies whether TIME or SPACE is the primary criterion for
the choice of representation of the record type that is denoted by the second
argument.

If TIME is specified, the compiler inserts implicit components as described
above. This is the default behavior of the compiler. If SPACE is specified,
the compiler only inserts a VARIANT-INDEX component or a RECORD-SIZE
component if a component clause for one of these components was supplied.
If the record type has no record representation clause, both components will
be suppressed. Thus, a record representation clause can be used to keep one
implicit component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that
a record representation clause is allowed for this type.

4-48 Type Representation Appendix F - Ada/300

F 4.8.15 Size of a Record Type or Subtype

The compiler generally will round up the size of a record type to a whole
number of storage units (bytes). If the record type has a component clause
that specifies a record component that cannot be expressed in storage units,
the compiler will not round up and instead the record size will be expressed as
an exact number of bits.

The size of a constrained record type is obtained by adding the sizes of its
components and the sizes of its gaps (if any). The size of a constrained record
will not be computed at compile time if:

" The record type has non-static constraints.

" A component is an array or record and its size cannot be computed at
compile time (that is, if the component has non-static constraints.)

The size of an unconstrained record type is the largest possible size that
the unconstrained record type could assume, given the constraints of the
discriminant or discriminants. If the size of any component cannot be
evaluated exactly at compile time, the compiler will use the maximum size that
the component could possibly assume to compute the size of the unconstrained
record type.

A size specification applied to a record type has no effect. The only size that
the compiler will accept in such a length clause is the usual size. Nevertheless,
such a length clause can be used to verify that the layout of a record is as
expected by the application.

Appendix F - Ada/300 Type Representation 4-49

F 4.8.16 Size of an Object of a Record Type

A record object of a constrained record type has the same size as its base type.

A record object of an unconstrained record type has the same size as its base
type if this size is less than or equal to 8192 bytes. The size of the base type is
the largest possible size that the unconstrained record type could assume, given
the constraints of the discriminant(s). If the size of the base type is larger than
8192 bytes, the record object only has the size necessary to store its current
value. Storage space is then allocated and deallocated dynamically based on
the current value of the discriminant or discriminants.

F 4.8.17 Alignment of a Record Subtype

When a record type does not have a record representation clause, or when a
record type has a record representation clause without an alignment clause,
the record type is word aligned if it contains a component whose type is
word-aligned and whose offset in the record is also word aligned. Otherwise the
record type is byte aligned. Any subtypes of a record type also have the same
alignment as their base type.

For a record type that has a record representation clause with an alignment
clause, any subtypes of this record type also obey the alignment clause.

I An alignment clause can specify that a record type is byte aligned or word
aligned. Word alignment is 2-byte alignment, or 16-bit alignment. Ada/300
does not support alignments larger than a 2-byte alignment.

4-50 Type Representation Appendix F - Ada/300

F 4.9 Data Allocation
Data objects are allocated into one of these:

" A stack frame.
" The global data area.
" The heap.
" No storage allocated.

A stack frame is used for objects declared in a subprogram or task body, or in
a declare block. The stack frame contains the data objects that are dynamic
(if each invocation of the subprogram or block creates a new data object.)
Each object allocated in a stack frame has a lifetime that begins after the
elaboration of the subprogram or block enclosing the object and ends after the
subprogram or the block is exited.

The global data area is used for objects declared in a library level packages,
either in the specification or in the body. The global data area contains the
data objects that can be allocated in a static manner. Each object allocated
in the global data area has a permanent lifetime. The global data area is
allocated in the .bss segment of the UNIX object file (see a.out_300(4)).

The heap is used for objects that are created by an Ada allocator as well as
objects created via indirect allocation. Storage for task objects, including the
task stack, are also allocated into the heap. The heap contains the data objects
that are dynamic in the broadest sense. Each object allocated in the heap has
a lifetime that begins after the allocator operation and ends only when an
explicit deallocator operation is performed. The heap is allocated using the
sbrk(2) system call and thus heap objects will reside in the .data segment of
the UNIX object file (see a.out_300(4)).

For constants that are scalar in type, no storage is allocated or used. The
values are stored in a compile-time data structure. Because these scalar
constants do not have an allocation address, it is illegal to refer to their address
(using the attribute 'ADDRESS) or to supply an address for them (using an
address clause.) Constants that are aggregates or non-scalar are allocated into
one of the above three locations.

Objects that are created by the compiler, such as temporaries, also obey the
above rules.

Appendix F - Ada/300 Type Representation 4.51

F 4.9.1 Direct Allocation versus Indirect Allocation

The HP Ada compiler determines whether to allocate each object directly in
the frame or in the global data area, or to allocate it dynamically in the heap
and access it via a pointer. These two modes are called direct and indirect,
respectively. The determination is based on the object's size or its ma-imum
possible size. An allocation map can be produced by using the -S assembly
option.

Note that objects of the unconstrained type STRING, including those returned
by functions that return the type STRING, are allocated in the heap.

F 4.9.2 Object Deallocation

This section describes compiler-generated objects, programmer-generated
objects, and program termination.

F 4.9.2.1 Compiler-Generated Objects

All objects that the compiler chooses to represent in an indirect form will
automatically be freed and their storage reclaimed when leaving the scope in
which the objects are declared. Moreover, all compiler-generated temporaries
that are allocated on the heap in a scope will be deallocated upon leaving the
scope. These compiler temporaries are often generated by such operations
as function calls returning unconstrained arrays, or by using the STRING
concatenation operator (&). By enclosing the statements in a begin ... end
block, you can force the heap from reclaiming the temporaries associated with
any statements.

The storage associated with a task object, including its stack space, is
automatically freed when the task terminates.

F 4.9.2.2 Programmer-Generated Objects

Whether the storage for an object created with an Ada allocator is reclaimed
depends on where the access type is declared.

For access types declared in a nested or non-library level scope, all objects
created with an Ada allocator will automatically be freed and their storage
reclaimed when leaving the scope in which the type was declared. Thus,
pragma CONTROLLED is effectively applied to all access types by default. Upon

4-52 Type Representation Appendix F - Ada/300

exiting a scope that declares an access type, the lifetime of any and all objects
of this access type haz expired and thus their storage can be reclaimed safely.

For access types declared in a library level scope or with library package
visibility, objects that are created using a type declared in a library level
package will not be freed by the Ada Runtime System. The compiler cannot
determine the lifetime of the object and thus must assume that a future
reference to the object could occur at any time. For these kinds of objects, it is
the programmer's responsibility to reclaim their storage through the careful use
of UNCHECKEDDEALLOCATI ON.

F 4.9.2.3 Program Termination

All memory used by a program, including code, global data, I/0 buffers, and so
on, is released when the program terminates and returns to HP-UX. This is the
standard behavior of any program under HP-UX.

F 4.9.3 Dynamic Memory Management

This section explains how dynamic memory is managed by the Ada Runtime
System.

F 4.9.3 Collections of Objects

Every access type has a corresponding collection of objects associated
with it. Each use of an allocator queries the corresponding collection and
then reserves the correct amount of space within the heap. Each use of
UNCHECKED-_DEALLOCATION updates the collection data structures and effectively
gives back the space for future use.

The size of the space taken from the heap depends on:

" The designated type.

* The access value type.

* Possibly, for an unconstrained record access type, the supplied value of the
discriminant or discriminants either when the object is created or again when
a new value is given to the object.

The effective size of the object can be obtained using the predefined attribute
'SIZE. For an unconstrained array access type, a descriptor is added that holds

Appendix F - Ada/300 Type Representation 4-53

the unconstrained actual dimension or dimensions with the actual size of the
array; thus, the descriptor size is the sum of the size container (generally 4
bytes) and all the actual constraints (array bounds) implemented the same way
as their index type (either 1, 2, or 4 bytes each).

The heap manager applies the following rules to each object:

" The size of the object is rounded up to an even number of bytes.

" The minimum size is 12 bytes. Thus, if the object is less than 12 bytes, it is
increased to 12 bytes.

" To the above size, the following is added: a 6-byte descriptor if the collection
is global (that is, is declared within a library level package) or a 14-byte
descriptor if the collection is in a nested scope (declared within a procedure
or task body).

A special rule applies for collections where the objects of the designated type
are of static size and are smaller than 64 bytes. Instead of allocating one
object at a time within the heap, blocks of several objects are allocated. The
size of the block is either 128 bytes or 16 times the object size plus 10 bytes,
whichever is greater. To the size of this block, the heap manager applies the
above rules; that is, the heap manager adds either a 6- or 14-byte descriptor.

When a collection size is specified using a length clause for an access type (that
is, T' STORAGESIZE use < nnn >), the heap manager will allocate a single block
of the specified size. The size of this block will be exactly the size specified in
the length clause. Individual objects will then be allocated from this block.
When space in the collection is exhausted, the exception STORAGE-ERROR will
be raised.

F 4.9.3.2 Global Dynamic Objects

A global dynamic object is a user-declared object whose size is not known until
execution time and that is declared within a library package (specification or
body including nested packages and blocks, but not subprograms or tasks.)

The compiler also will consider an object as dynamic if the size is bigger than
1024 bytes, even if this size is known statically at compile time. The compiler
also will consider any object as static if the maximum size is smaller than 128
bytes, even if this size must be dynamically computed at execution time.

4-54 Type Representation Appendix F - Ada/300

All such global dynamic objects are allocated within the heap. The size of
these objects can be obtained using the predefined attribute 'SIZE and the
heap manager applies the same rules to them as it does for collections of
objects, as described above.

F 4.9.3.3 Local Objects

Local objects, declared within a subprogram or task, are normally allocated in
the stack. This is done either in the frame associated with the subprogram or
task execution, or dynamically on top of the stack at the time of elaboration of
the object declaration when the size of the object is dynamic.

The heap is used, however, for an unconstrained record if the object
discriminant or discriminants can be changed during the lifetime of the object,
and this discriminant change has potentially a large effect on the object size.
In this case, the object is allocated in the heap, and when the discriminant
changes, a new space of the desired size is allocated and the old space is given
back to the heap.

The heap manager applies the same rules for object size as described in
section F 4.9.3.1, "Collections of Objects."

F 4.9.3.4 Temporary Objects

During code execution, it is sometimes necessary to take some memory space
from the heap to hold temporary object values. This happens only when the
memory is not known at compiler time, or is big enough (more than 128 bytes)
to be considered as dynamic rather than static for this implementation.

The following cases are possible:

" Function results that are of a dynamic size.

" Evaluation of large aggregates.

" Operations on dynamic arrays (such as catenation of object of type STRING;
also the predefined operators and, or, xor, and not used on dynamic Boolean
arrays).

" Evaluation of the predefined attribute 'IMAGE.

Appendix F - Ada/300 Type Representation 4-55

F 4.9.3.5 Reclaiming Heap Storage

Heap storage is reclaimed as follows:

" For an access type's collection, all storage allocated is returned upon exiting
the scope in which type access type was declared. Reclaiming occurs whether
the exit is normal or abnormal (that is, due to exception propagation.)

" A task's storage (including its' stack) is reclaimed when the task terminates.

" For an object passed to an instance of the generic procedure
UNCHECKED -DEALLOCATION, the storage associated with the object is
reclaimed immediately.

" For a temporary object, storage is returned no later than on exit from-the
scope (subprogram or block) that contained the allocation of the temporary
object.

For objects of an access type declared in a library package, automatic
reclaiming is not performed. This would require automatic garbage
collection with its' inherent overhead at runtime. You should perform
UNCHECKED_-DEALLOCATION to reclaim this storage.

4-56 Type Representation Appendix F - Ada/30D

5
F 5. Names for Predefined Library Units

The names listed below are used by the HP Ada Development System. Do not
use any of these names for your library-level Ada units.

Not available for use:

ALSYSADA.RUNTIME
HIT

Names that are available, but should be avoided if you want access to packages I
that are provided by Hewlett-Packard:

MATHLIB
MATH-EXCEPTIONS |
SYSTEM-ENVIRONMENT

The above three packages are documented in the Ada 300 User's Guide.

Appendix F - Ada/300 Names for Predefined Library Units 5-1

6
F 6. Address Clauses

This chapter describes the available address clauses.

F 6.1 Objects
An address clause can be used to specify an address for an object as described
in the Ada RM, section 13.5. When such a clause applies to an object, no
storage is allocated for it in the program generated by the compiler. Storage
for the object must be allocated for the object outside of the Ada program unit
unless the address is a memory mapped hardware address. The Ada program
accesses the object by using the address specified in the address clause.

An address clause is not allowed for unconstrained records whose maximum
size can be greater than 8192 bytes. I
Note that the function SYSTEM.VALUE, defined in the package SYSTEM, is
available to convert a STRING value into a value of type SYSTEM. ADDRESS (see
section F 3.1, "The Package SYSTEM", for details). Note that the IMPORT
attribute is available to provide the address of an external symbol (see section
F 2.2, "Attribute SYSTEM.ADDRESS'IMPORT", for details).

Appendix F - Ada/300 Address Clauses 6-1

I F 6.2 Subprograms
SAddress clauses for subprograms are not implemented in the current version of
the Ada/300 compiler.

I F 6.3 Constants
A ddress clauses for constants are not implemented in the current version of the
Ada/309 compiler.

I F 6.4 Packages
I Address clauses for packages are not implemented in the current version of the

Ada/300 compiler.

I F 6.5 Tasks
I Address clauses for tasks are not implemented in the current version of the

Ada/300 compiler.

6-2 Address Clauses Appendix F - Ada/300

F 6.6 Data Objects
An address clause can specify the address for an object as described in tle
Ada RM, section 13.5. The address supplied must be either an integer
constant or the value returned by the implementation-defined attribute
SYs.TEM. ADDRESS' IMPORT. This attribute is defined to return a reference
value that can be used as the address of an external static data object. This
attribute takes two parameters: the language and the name of the external
data object. Both of these parameters are Ada strings.

Example

IMPORTOBJ: INTEGER;

for IMPORTOBJ use at SYSTEM.ADDRESS'IMPORT("c", "cobj");

MEMORYMAPPEDOBJ: INTEGER;

for MEMORYMAPPEDOBJ use at 16#6FFF_0400#;

F 6.7 Task Entries
An address clause can be supplied for an Ada task entry. The actual address of
the Ada task entry is not bound to the value supplied by the address clause.
Instead, this kind of address clause is used to provide the interrupt entry
mechanism (see section F 12, "Interrupt Entries", for details.)

Appendix F - Ada/300 Address Clauses 6-3

7
F 7. Restrictions on Unchecked Type
Conversions

The following limitations apply to the use of UNCHECKED.CONVERSION:

" Unconstrained arrays are not allowed as target types.

" Unconstrained record types without defaulted disciminants are not allowed as
target types.

" Access types to unconstrained arrays or unconstrained strings are not allowed
as source or target types.

" If the source and target types are each scalar types, the sizes of the types
must be equal.

" If the source and target types are each access types, the sizes of the objects
that the types denote must be equal.

" If the source or target type is a composite type, the sizes do not have to be
equal. See the warning below for more details.

If the source and target types are each of scalar or access types or if they are
both of composite type with the same static size, the effect of the function is to
return the operand.

In other cases, the effect of unchecked conversion can be considered as a copy
operation.

Appendix F - Ada/300 Restrictions on Unchecked Type Conversions 7.1

Warning When you do an UNCHECKEDCONVERSION among types whose
sizes do not match, the code that is generated copies as many
bytes as necessary from the source location to fill the target.
If the target is larger than the source, the code copies all of
the source plus whatever follows the source. Therefore, an
UNCHECKEDCONVERSION among types whose sizes do not match
can produce meaningless results, or can actually cause a trap
and abort the program (if these memory locations do not actually
exist).

7-2 Restrictions on Unchecked Type Conversions Appendix F - Ada/300

8
F 8. Implementation-Dependent Input-Output
Characteristics

This chapter describes the I/O characteristics of Ada on the HP 9000
Series 300 computer. Ada handles I/O with packages, which are discussed
in section F 8.1. File types are described in section F 8.1.3 and the FORM
parameter is discussed in section F 8.2.

F 8.1 Ada I/O Packages for External Files
In Ada, I/O operations are considered to be performed on objects of a certain
file type rather than directly on external files. An external file is anything
external to the program that can produce a value to be read or receive a value
to be written. In Ada, values transferred to and from a given file must all be of
the same type.

Generally, the term file object refers to an Ada file of a certain file type,
whereas a physical manifestation is known as an external file. An external file
is characterized by:

" Its NAME, which is a string defining a legal pathname for an external file on
the underlying operating system. HP-UX is the underlying operating system
for Ada/300. The rules that govern legal pathnames for external files in Ada I
programs are the same as those that govern legal pathnames in HP-UX. See
section F 8.1.2 for details.

" Its FORM, which allows you to supply implementation-dependent information
about the external file characteristics.

Appendix F . Ada/300 Implementation-Dependent Input.Output 8-1

Both NAME and FORM appear explicitly in the Ada CREATE and OPEN procedures.
These two procedures perform the association of the Ada file object and the
corresponding external file. At the time of this association, a FORM parameter is
permitted to specify additional characteristics about the external file.

Ada I/O operations are provided by several predefined standard packages. See
the Ada RM, section 14 for more details. Table 8-1 describes the standard
predefined Ada I/O packages.

Table 8-1. Standard Predefined I/O Packages

Package Description and Ada RM Location

SEQUENTIAL-IO A generic package for sequential files of a single
element type. (Ada RM, section 14.2.3)

DIREC7IO A generic package for direct (random) access
files of a single element type. (Ada RM, section
14.2.5)

TEXTIO A non-generic package for ASCII text files.
(Ada RM, section 14.3.10)

IOEXCEPTIONS A package that defines the exceptions needed
by the above three packages. (Ada RM, section

114.5)

The generic package LOWLEVELIO is not implemented.

8-2 !mplementation-Dependent Input-Output Appendix F - Ada/300

F 8.1.1 Implementation-Dependent Restrictions on I/O Packages
The upper bound for index values in DIRECTIO and for line, column, and page
numbers in TEXT_I0 is:

COUNT'LAST = 2**31 - 1

The upper bound for field widths in TEXT_I0 is:

FIELD'LAST = 255

F 8.1.2 Correspondence between External Files and HP-UX Files
When Ada I/O operations are performed, data is read from and written to
external files. Each external file is implemented as a standard HP-UX file.
However, before an external file can be used by an Ada program, it must be
associated with a file object belonging to that program. This association is
achieved by supplying the name of the file object and the name of the external
file to the procedures CREATE or OPEN of the predefined I/O packages. Once the
association has been made, the external file can be read from or written to with
the file object. Note that for SEQUENTIALIO and DIRECTIO, you must first
instantiate the generic package to produce a non-generic instance. Then you
can use the CREATE or OPEN procedure of that ;,-stance. The example at the
end of this section illustrates this instantiatio. rocess.

The name of the external file can be either of the following:

" an HP-UX pathname

" a null string (for CREATE only)

The exception USE-ERROR is raised by the procedure CREATE if the specified
external file cannot be created. The exception USE-ERROR is also raised by the
procedure OPEN if you have insufficient access rights to the file.

If the name is a null string, the associated external file is a temporary file
created using the HP-UX facility tmpnam(3). This external file will cease to
exist upon completion of the program.

Appendix F - Ada/300 Implementation-Dependent Input-Output 8-3

When using OPEN or CREATE, the Ada exception NAME-ERROR is raised if any
path component exceeds 255 characters or if an entire path exceeds 1023
characters. This limit applies to path components and the entire path during
or after the resolution of symbolic links and context-dependent files (CDFs).

Warning The absence of NAME-ERROR does not guarantee that the
path will be used as given. During and after the resolution of
symbolic links and context-dependent files (CDFs), the underlying
file system may truncate an excessively long component of the
resulting pathname. For example, a fifteen character file name
used in an Ada program OPEN or CREATE call will be silently
truncated to fourteen characters without raising NAME-ERROR by
an HP-UX file system that is configured for "short filenames".

If an existing external file is specified to the CREATE procedure, the contents
of that file will be deleted. The recreated file is left open, as is the case for a
newly created file, for later access by the program that made the call to create
the file.

Example

-- This example creates a file using the generic
-- package DIRECTIO. It also demonstrates how
-- to close a file and reopen it using a
-- different file access mode.

with DIRECTIO;
with TEXTIO;

procedure RTEST is

-- here we instantiate DIRECTIO on the type INTEGER

package INTIO is new DIRECTIO (INTEGER);

-- Define a file object for use in Ada

IFILE : INTIO.FILETYPE;

8-4 Implementation-Dependent Input-Output Appendix F - Ada/300

IVALUE : INTEGER := 0; -- Ordinary integer object

begin

INTIO.CREATE (FILE => IFILE,
-- Ada file is IFILE
MODE => INTIO.OUTFILE,
-- MODE allows WRITE only
NAME => "myfile"
-- file name is "myfile"

TEXTIO.PUTLINE ("Created & "
INTIO.NAME (IFILE) &
", mode is " &
INTIO.FILEMODE'IMAGE(INTIO.MODE (IFILE)));

INTIO.WRITE (IFILE, 21); -- Write the integer 21 to the file

-- Close the external file
INTIO.CLOSE (FILE => IFILE);

TEXTIO.PUTLINE("Closed file");

INTIO.OPEN (FILE => IFILE,
-- Ada file is IFILE
MODE => INTIO.INOUTFILE,
-- MODE allows READ and WRITE
NAME => "myfile"

-- file name is "myfile"

TEXT.IO.PUTLINE ("Opened k "
INTIO.NAME (IFILE) &
", mode is " &
INTIO.FILEMODE'IMAGE(INTIO.MODE (IFILE)))

INTIO.READ (IFILE, IVALUE); -- Read the first item

TEXTIO.PUTLINE("Read from file,

Appendix F - Ada/300 Implementation-Dependent Input-Output 8-5

IVALUE = &INTEGER'IMAGE(IVALUE));

INTIO.WRITE (IFILE, 65); -- Write the integer 65 to the file

TEXT-.IO.PUTyr-LINE("Added an Integer to:

"& INTIO.NAME (IFILE));

INTIO.RESET (FILE => IFILE,
-- Set MODE to allow READ only
MODE => INTIO.IN-.FILE);

-and move to the beginning of the file.

-- IFILE remains open)

TEXT-.IO.PUT..LINE ("Reset :"&

INTIO.NA14E (IFILE) &
", mode is "&

INTIO.FILE-MODE'IMAGE(INTIO.MODE (IFILE)))

while not INTIO.END-OF.FILE(IFILE) loop
INTIO.READ CIFILE, IVALUE);
TEXT..IO.PUT.LINE("Read from file, IVALUE = &

INTEGER'IMAGE(IVALUE))
end loop;

TEXT-.IO.PUT.LINE("At the end of file, IFILE");

TEXT..IO.PUT-LINE("Close file");

end RTEST;

In the example above, the file object is IFILE, the external file name relative to
your current working directory is myf ile, and the actual rooted path could be
/PROJECT/myf ile. Error or informational messages from the Ada development
system (such as the compiler or tools) may mention the actual rooted path.

8-6 Implementation-Dependent Input-Output Appendix F - Ada/300

Note The Ada/300 development system manages files internally so
that names involving symbolic links (see in(1)) are mapped
back to the actual rooted path. Consequently, when the
Ada/300 development system interacts with files involving
symbolic links, the actual rooted pathname may be mentioned
in informational or error messages rather than the symbolic
name.

F 8.1.3 Standard Implementation of External Files

External files have a number of implementation-dependent characteristics, such
as their physical organization and file access rights. It is possible to customize
these characteristics through the FORM parameter of the CREATE and OPEN
procedures, described fully in section F 8.2. The default of FORM is the null
string.

The next three subsections describe the Ada/300 implementation of these three I
types of external files: SEQUENTIAL_IO, DIRECTIO, and TEXT.IO files.

F 8.1.3.1 SEQUENTIAL-1O Files

A SEQUENTIALIO file is a sequence of elements that are transferred in the
order of their appearance to or from an external file. Each element in the file
contains one object of the type that SEQUENTIALIO was instantiated on. All
objects in the file are of this same type. An object stored in a SEQUENTIALIO
file has exactly the same binary representation as an Ada object in the
executable program.

The information placed in a SEQUENTIALIO file depends on whether the type
used in the instantiation is a constrained type or an unconstrained type.

For a SEQUENTIALI0 file instantiated with a constrained type, each element
is simply the object. The objects are stored consecutively in the file without
separators. For contrained types, the number of bytes occupied by each
element is the size of the constrained type and is the same for all elements.
Files created using SEQUENTIALIO on constrained types can be accessed as
DIRECTIO files at a later time. The representation of both SEQUENTIALIO and
DIRECTIO files are the same when using constrained types.

Appendix F - Ada/300 Implementation-Dependent Input-Output 8-7

For a SEQUENTIALIO file instantiated with an unconstrained type, each
element is composed of three parts: the size (in bytes) of the object is stored in
the file as a 32-bit integer value, the object, and a few optional unused trailing
bytes. These unused trailing bytes will only be appended if the FORM parameter
RECORD-UNIT was specified in the CREATE call. This parameter instructs the
Ada runtime to round up the size of each element in the file to be an integral
multiple of the RECORDUNIT size. The default value for RECORD-UNIT is one
byte, which means that unused trailing bytes will not be appended. The
principle use for the RECORD-UNIT parameter is in reading and writing external
files that are in formats that already use this convention. Files created using
SEQUENTIALIO on unconstrained types cannot be accessed as DIRECT.IO files
at a later time. The representation of SEQUENTIAL_IO and DIRECT-10 files are
not the same when using an unconstrained type. See section F 8.2.9.2 for more
information on file structure.

A SEQUENTIALIO file can be buffered. Buffering is selected by specifying a
non-zero value for the FORM parameter, BUFFER-SIZE. The I/O performance
of an Ada program will be considerably improved if buffering is used. By
default, no buffering takes place between the physical external file and the Ada
program. See section F 8.2.4 for details on specifying a file BUFFER-SIZE.

F 8.1.3.2 DIRECT-IO Files

A DIRECTIO file is a set of elements each occupying consecutive positions in
a linear order. DIRECTIO files are sometimes refered to as random-access files
because an object can be transferred to or from an element at any selected
position in the file. The position of an element in a DIRECT.IO file is specified
by its index, which is a number in the range 1 to (2**31)-l of the subtype
POSITIVE-COUNT. Each element in the file contains one object of the type
that DIRECTIO was instantiated on. All objects in the file are of this same
type. The object stored in a DIRECTIO file has exactly the same binary
representation as the Ada object in the executable program.

Elements within a DIRECTIO file always have the same size. This requirement
allows the Ada runtime to easily and quickly compute the location of any
element in a DIRECTIO file.

For a DIRECTIO file instantiated with a constrained type, the number of bytes
occupied by each element is the size of the constrained type. Files created

8-8 Implementation-Dependent Input-Output Appendix F - Ada/300

using DIRECTIO on constrained types can be accessed as SEQUENTIAL_IO files
at a later time. The representation of both DIRECTIO and SEQUENTIAL-fO files
are the same when using a constrained type.

For DIRECTIO files instantiated with an unconstrained type, the number
of bytes occupied by each element is determined by the FORM parameter,
RECORD-SIZE. All of the unconstrained objects stored in the file must have an
actual size that is less than or equal to this size. The exception DATA.ERROR
is raised if the size of an unconstrained object is larger than this size. Files
created using DIRECTIO on unconstrained types cannot be accessed as
SEQUENTIAL.IO files at a later time. The representation of DIRECT.IO and
SEQUENTIALIO files are not the same when using an unconstrained type. See
section F 8.2.9.2 for more information on file structure.

If the file is created with the default FORM parameter attributes (see section
F 8.2), only objects of a constrained type can be written to or read from
a DIRECTIO file. Although an instantiation of DIRECTIO is accepted for
unconstrained types, the exception USE-ERROR is raised on any call to CREATE
or OPEN when the default value of the FORM parameter is used. You must
specify the maximum RECORD-SIZE for the unconstrained type.

A DIRECT.IO file can be buffered. Buffering is selected by specifying a non-zero
value for the FORM parameter, BUFFER-SIZE. The I/O performance of an Ada
program will normally be considerably improved if buffering is used. However,
for a DIRECTIO file that is accessed in a random fashion, performance can
actually be degraded. The buffer will always reflect a contiguous set of
elements in the file and if subsequent I/O requests lie outside of the current
buffer, the entire buffer will be updated. This could cause performance to
degrade if a large buffer is used and each I/O request requires that the buffer
be updated. By default, no buffering takes place between the physical external
file and the Ada program. See section F 8.2.4 for details on specifying a file
BUFFER-SIZE.

Appendix F - Ada/300 Implementation-Dependent Input-Output 8-9

F 8.1.3.3 TEXT-1O Files

A TEXTIO file is used for the input and output of information in readable
form. Each TEXT_I0 file is read or written sequentially as a sequence of
characters grouped into lines and as a sequence of lines grouped into pages. All
TEXT_I0 column numbers, line numbers, and page numbers are in the range 1
to (2**31)-i of subtype POSITIVECOUNT. The line terminator (end-of-line)
is physically represented by the character ASCII.LF. The page terminator
(end-of-page) is physically represented by a succession of the two characters,
ASCII .LF and ASCII .FF, in that order. The file terminator (end-of-file) is
physically represented by the character ASCII .LF and is followed by the
physical end of file. There is no ASCII character that marks the end of a
file. An exception to this rule occurs when reading from a terminal device. In
this case, the E0F character defined by HP-UX is used by the Ada runtime
to indicate the end-of-file (see stty(1) and termio(7) for details.) See
section F 8.2.9.1 in this manual for more information about the structure of
text files.

If you leave the control of line, page, and file terminators to the Ada runtime
and use only TEXTI0 subprograms to create and modify the text file, you
need not be concerned with the above terminator implementation details.
However, you must not output the characters ASCII .LF or ASCII .FF when
using TEXT_.IO .PUT operations because these characters would be interpreted
as line terminators or as page terminators when the file was later read using
TEXTIO . GET. If you affect structural control by explicitly outputting these
control characters, it is your responsibility to maintain the integrity of the
external file.

If your text file was not created using TEXT.IO, your text file may not be in a
format that can be interpreted correctly by TEXT_I0. It may be necessary to
filter the file or perform other modifications to the text file before it can be
correctly interpreted as an Ada text file. See section F 8.2.9.1 for information
on the structure of TEXTI0 files.

The representation of a TEXT_I0 file is a sequence of ASCII characters. It is
possible to use DIRECTIO or SEQUENTIAL.IO to read or write a TEXT_I0 file.
The Ada type CHARACTER must be used in the instantiation of DIRECTIO or
SEQUENTIALIO. It is not possible to use DIRECT_IO or SEQUENTIALIO on the
Ada type STRING to read or write a TEXT.I0 file.

8-10 Implementation-Dependent Input-Output Appendix F - Ada/300

A TEXTIO file can be buffered. Buffering is selected by specifying a non-zero
value for the FORM parameter, BUFFER-SIZE. The I/O performance of an Ada
program will be considerably improved if buffering is used. By default, no
buffering takes place between the physical external file and the Ada program.
However, terminal input is line buffered by default. See sections F 8.2.4 and
F 8.2.8 for details.

F 8.1.4 Default Access Protection of External Files

HP-UX provides protection of a file by means of access rights. These access
rights are used within Ada programs to protect external files. There are three
levels of protection:

" User (the owner of the file).

" Group (users belonging to the owner's group).

" Others (users belonging to other groups).

For each of these levels, access to the file can be limited to one or several of
the following rights: read, write, or execute. The aefault HP-UX external file
access rights are specified by using the umask(1) command (see umask(1) and
umask(2) in the HP-UX Reference.) Access rights apply equally to sequential,
direct, and text files. See section F 8.2.3 on the FORM parameter for information
about specifying file permissions at the time of CREATE.

F 8.1.5 System Level Sharing of External Files

Under HP-UX, several programs or processes can access the same HP-UX file
simultaneously. Each program or process can access the 14P-UX file either for
reading or for writing. Although HP-UX can provide file and record locking
protection using fcntl(2) or lockf (2), Ada/300 does not utilize this feature I
when it performs I/O on external files. Thus, the external file that Ada reads
or writes is not protected from simultaneous access by non-Ada processes, or by
another Ada program that is executing concurrently. Such protection is outside |
the scope of Ada/300. However, you can limit access to a file by specifying a

Appendix F - Ada/300 Implementation-Dependent Input-Output 8-11

file protection mask using the FORM parameter when you create the file. See
section F 8.2.3 for more information.

The effects of sharing an exterr - file depend on the nature of the file. You
must consider the nature of the device attached to the file object and the
sequence of I/O operations on the device. You also must consider the effects of
file buffering if you are attempting to update a file that is being shared.

For shared files on random access devices, such as disks, the data is shared.
Reading from one file object does not affect the file positioning of another
file object, nor the data available to it. However, writing to a file object may
not cause the external file to be immediately updated; see section F 8.2.5.1,
"Interaction of File Sharing and File Buffering" for details.

For shared files on sequential devices or interactive devices, such as magnetic
tapes or keyboards, the data is no longer shared. In other words, a magnetic
record or keyboard input character read by one I/O operation is no longer
available to the next operation, whether it is performed on the same file object
or not. This is simply due to the sequential nature of the device.

By default, file objects represented by STANDARD-INPUT and STANDARD-OUTPUT
are preconnected to the HP-UX streams stdin and stdout (see stdio(5)),
and thus are of this sequential variety of file. The HP-UX stream stderr is not

r connected to an Ada file, but is used by the Ada runtime system for error
messages. An Ada subprogram called PUT-TO-STANDARD_-ERROR is provided in
the package SYSTEM.ENVIRONMENT which allows your program to output a line
to the HP-UX stream stderr.

Note The sharing of external files is system-wide and is managed by
the HP-UX operating system. Several programs may share
one or more external files. The file sharing feature of HP Ada
using the FOFKM parameter SHARED, which is discussed in
section F 8.2.5, is not system-wide, but is a file sharing within a
single Ada program and is managed by that program.

8-12 Implementation-Dependent Input-Output Appendix F - Ada/300

F 8.1.6 I/O Involving Access Types
When an object of an access type is specified as the source or destination of an
I/O operation (read or write), the 32-bit binary access value is read or written
unchanged. If an access value is read from a file, make sure that the access
value read designates a valid object. This will only be the case if the access
value read was previously written by the same execution of the program that is
reading it, and the object which it designated at the time it was written still
exists (that is, the scope in which it was allocated has not been exited, nor has
an UNCHECKEDDEALLOCATION been performed on it). A program may execute
erroneously or raise PROGRAM-ERROR if an access type read from a file does not
designate a valid object. In general, I/O involving access types is strongly
discouraged.

F 8.1.7 I/O Involving Local Area Networks

Note: Removed RFA information.

This section assumes knowledge of networks. It describes Ada program I/0
involving Local Area Network (LAN) services available on the Series 300
computers: NFS t systems (remote file access using the NFS network services I
software.)

The Ada programs discussed here are executed on a local (host) computer.
These programs access or create files on a remote system, which is connected to
a mass storage device not directly connected to the host computer. The remote
file system can be mounted and accessed by the host computer using NFS LAN I
services. NFS systems are described in the manuals Using NFS Services and
Installing and Administering NFS Services.

t NFS is a trademark of Sun Microsystems. Inc.

Appendix F - Ada/300 Implementation-Dependent Input-Output 8-13

If an Ada program ex 'ects to access or create a file on a remote file system
using NFS LAN services, the remote volumes that contain the file system must
be mounted on the host computer prior to the execution of the Ada program.

For example, assume that the remote system (cezanne) exports a file system
/project. /project is mounted on the host computer as /ada/project. Files
in this remote file system are accessed or created by references to the files as
if they were part of the local file system. To access the file test .file, the
program would reference /ada/project/test.file on the local system. Note

I that test .file appears as /project/test.file on the remote system.

The remote file system must be exported to the local system before it can be
locally mounted using the mount(lm) command.

F 8.1.8 Potential Problems with I/O From Ada Tasks

I In an Ada tasking environment on the HP 9000 Series 300, the Ada runtime
must ensure that a file object is protected against attempts to perform multiple
simultaneous I/O operations on it. If such protection was not provided, the
internal state of the file object could become incorrect. For example, consider
the case of two tasks each writing to STANDARD-OUTPUT simultaneously.
The internal values of a text file object include information returned by
TEXTIU .COL, TEXTI0.LINE, and TEXTIO.PAGE functions. These internal
values are volatile and any I/O operations that change these values must be
completed before any other I/O operations are begun on the file object. Thus,
the file object is protected by the Ada runtime for the duration of the I/O
operation. If another task is scheduled and runs before the I/O operation has
completed and this task attempts to perform I/O on the protected file object,
the exception PROGRAM-ERROR is generated at the point of the I/O operation. If
this exception is not caught by the task, the task will be terminated.

8-14 Implementation-Dependent Input-Output Appendix F - Ada/300

Note that the file protection provided by the Ada runtime is not the same
as the protection provided by the use of the SHARED attribute of the FORM
parameter of CREATE or OPEN calls. The FORM parameter either prohibits or
allows multiple Ada file objects to share the same external file. In contrast, the
file protection provided by the Ada runtime prohibits the simultaneous sharing
of the same Ada file object between tasks. The SHARED attribute always deals
with multiple Ada file objects.

The file protection provided by the Ada runtime will only be a problem when
the same Ada file object is used by different tasks. When each task uses a
separate file object, it is not necessary to provide explicit synchronization when
performing I/O operations. This is true even when the file objects are sharing
the same external file. However, for this case, you will need to consider the
effects of the SHARED attribute and/or file buffering.

Caution It is your responsibility to utilize proper synchronization and
mutual exclusion in the use of shared resources. Note that
shared access to a common resource (in this case, a file object)
could be achieved by a rendezvous between tasks that share
that resource. If you write a program in which two tasks
attempt to perform I/O operations on the same logical file
without proper synchronization, that program is erroneous.
(See Ada RM, section 9.11)

Appendix F - Ada/300 Implementation-Dependent Input-Output 8-15

F 8.1.9 I/0 Involving Symbolic Links

Some caution must be exercised when using an Ada program that performs I/O
operations to files that involve symbolic links. For more detail on the use of
symbolic links to files in HP-UX, see ln(1).

Creating a symbolic link to a file creates a new name for that file; that is, an
alias for the actual file name is created. If you use the actual file name or its
alias (that is, the name involving symbolic links), Ada I/O operations will work
correctly. However, the NAME function in the TEXT.IO, SEQUENTIAL.IO, and
DIRECToIO packages will always return the actual rooted path of a file and not
a path involving symbolic links.

8-16 Implementation-Dependent Input-Output Appendix F - Ada/300

F 8.1.10 Ada I/O System Dependencies

Ada/300 has a requirement (see Ada RM, section 14.2.1(21)) that the NAME I
function must return a string that uniquely identifies the external file in
HP-UX. In determining the unique file name, the Ada runtime system may
need to access directories and directory entries not directly associated with
the specified file. This is particularly true when the path to the file specified
involves NFS systems. This access involves HP-UX operating system calls that I
are constrained by HP-UX access permissions and are subject to failures of the
underlying file system, as well as by network behavior.

Warning It is during the Ada/300 OPEN and CREATE routines that the name
that uniquely identifies the external file is determined for later
use by the NAME function. If it was not possible to determine that
name, an exception is raised by the call to the OPEN or CREATE
routine.

If, during name determination, the underlying file system or or
network denies acess (possibly due to a failed remote file
system) or the access permissions are improper, the OPEN or
CREATE call will raise an exception. Or, for some conditions of
network failure, the call might not complete until the situation is
corrected.

Appendix F - Ada/300 Implementation-Dependent Input-Output 8.17

For example, when opening a file, the Ada exception NAME-ERROR is raised if
there are any directories in the rooted path of the file that are not readable or
searchable by the "effective uid" of the program. This restriction applies to
intermediate path components that are encountered during the resolution of
symbolic links.

Also, if access to an NFS "hard" mounted remote file system is lost (possibly
due to a network failure), subsequent OPEN or CREATE calls on a file whose
actual rooted path contains the parent directory of the NFS mount point might
not complete until the NFS failure is corrected (whether or not the actual file
being accessed is on the failed NFS volume.)

8-18 Implementation-Dependent Input-Output Appendix F - Ada/300

F 8.2 The FORM Parameter
For both the CREATE and OPEN procedures in Ada, the FORM parameter specifies
the characteristics of the external file involved.

F 8.2.1 An Overview of FORM Attributes

The FORM parameter is composed from a list of attributes that specify the
following:

" File protection
" File buffering
" File sharing
" Appending
" Blocking
" Terminal input
" File structuring
" Terminal Input

F 8.2.2 The Format of FORM Parameters

Attributes of the FORM parameter have an attribute keyword followed by the
Ada "arrow symbol" (=>) and followed by a qualifier or numeric value.

The arrow symbol and qualifier are not always needed and can be omitted.
Thus, the format for an attribute specifier is

K-EYWORD

or

KEYWORD => QUALIFIER

Appendix F - Ada/300 Implementation.Dependent Input-Output 8-19

The general format for the FORM parameter is a string formed from a list of
attributes with attributes separated by commas. (FORM attributes are distinct
from Ada attributes and the two are not related.) The FORM parameter string
is not case sensitive. The arrow symbol can be separated by spaces from the
keyword and qualifier. The two forms below are equivalent:

KEYWORD => QUALIFIER

KEYWORD => QUALIFIER

In some cases, an attribute can have multiple qualifiers that can be presented
at the same time. In cases that allow multiple qualifiers, additional qualifiers
are introduced with an underscore (_). Note that spaces are not allowed
between the additional qualifiers; only underscore characters are allowed.
Otherwise, a USE-ERROR exception is raised by CREATE. The two examples that
follow illustrate the FORM parameter format.

The first example illustrates the use of the FORM parameter in the
TEXTIO.OPEN to set the file buffer size.

-- Example of opening a file using the non-generic
-- package TEXTIO. This illustrates the use of the
-- FORM parameter BUFFER-SIZE.
-- Note: "inpt-file" must exist or NAME-ERROR will be raised.

with TEXTIO;

procedure STEST is

--Define a file object for use in Ada
TFILE : TEXTIO.FILETYPE;

begin -- STEST
TEXTIO.OPEN (FILE => TFILE, -- Ada file is TFILE

MODE => TEXTIO.IN.FILE, -- Access allows reading
NAME => "inpt-file", -- file name is "inpt-file"
FORM => "BUFFER-SIZE => 4096"

-- Buffer Size is 4096 bytes

end STEST;

8-20 Implementation-Dependent Input-Output Appendix F - Ada/30n

The second example illustrates the use of the FORM parameter in
TEXTIO.CREATE. This example sets the access rights of the owner (HP-UX file
permissions) on the created file and shows multiple qualifiers being presented at
the same time.

TEXTIO.CREATE (OUTPUT-FILE, TEXTIO.OUT.FILE, OUTPUTFILENAME,
FORM=>"owner>read.rite_ execute") ;

F 8.2.3 The FORM Parameter Attribute - File Protection
The file protection attribute is only meaningful for a call to the CREATE
procedure.

File protection involves two independent classifications. The first classification
specifies which user can access the file and is indicated by the keywords listed
in table 8-2.

Table 8-2. User Access Categories

Category Grants Access To

OWNER Only the owner of the created file.

GROUP Only the members of a defined group.

WORLD Any other users.

Note that WORLD is similar to "others" in HP-UX terminology, but was used in
its place because OTHERS is an Ada reserved word.

Appendix F - Ada/300 Implementation.Deperdent Input-Output 8-21

The second classification specifies access rights for each classification of
user. The four general types of access rights, which are specified in the FORM
parameter qualifier string, are listed in table 8-3.

Table 8-3. File Access Rights

Category Allows the User To

READ Read from the external file.

WRITE Write to the external file.

EXECUTE Execute a program stored in the external file.

NONE The user has no access rights to the external file. (This qualifier
overrides any prior privileges).

More than one access right can be specified for a particular file. Additional
access rights can be indicated by separating them with an underscore, as noted
earlier. The following example using the FORM parameter in TEXTIO. CREATE
sets access rights of the owner and other users (HP-UX file permissions) on
the created file. This example illustrates multiple qualifiers being used to set
several permissions at the same time.

TEXTIO.CREATE (OUTPUT-FILE, TEXTI0.OUT.FILE, OUTPULFILENAME,
FORMf>"owner=>read-write_execute, world=>none");

Note that the HP-UX command umask(1) may have set the default rights
for any unspecified perlissions. In the previous example, permission for the
users in the category GROUP were unspecified. Typically, the default umask will
be set so that the default allows newly created files to have read and write
permission (and no execute permission) for each category of user (USER, GROUP,
and WORLD).

8-22 Implementation-Dependent Input-Output Appendix F - Ada/300

Consider the case where the users in WORLD want to execute a program in an
external file, but only the owner may modify the file. The appropriate FORM
parameter is:

WORLD => EXECUTE,

OWNER => READWRITEEXECUTE

This would be applied as:

TEXT.IO.CREATE (OUTPUT-FILE, TEXTIO.OUTFILE, OUTPUTFILENAME,
FORM=>"world >execute, owner=>readwrite_execute");

Repetition of the same qualifier within attributes is illegal:

WORLD => EXECUTE-EXECUTE -- NOT legal

But repetition of entire attributes is allowed:

WORLD => EXECUTE, WORLD => EXECUTE -- legal

F 8.2.4 The FORM Parameter Attribute - File Buffering

The buffer size can be specified by the attribute:

BUFFER.SIZE => size-in.bytes

The default value for BUFFER-SIZE is zero, which means no buffering. Using
the file buffering attribute will improve I/O performance by a considerable
amount in most cases. If I/O performance is a concern for disk files, the
attribute BUFFER-SIZE should be set to a value that is an integral multiple of
the size of a physical disk block. The size of a physical disk block can be found
in <sys/param.h> and is 1024 bytes for the HP 9000 Series 300.

Appendix F - Ada/300 Implementation-Dependent Input-Output 8-23

An example of the use of the FORM parameter in the TEXTIO. OPEN to set the
file buffer size is shown below:

-- An example of creating a file using the non-generic
-- package TEXTIO. This illustrates the use of the
-- FORM parameter BUFFER-SIZE.

with TEXTIO;
procedure TTEST is

BFILE : TEXTIO.FILETYPE; -- Define a file object
-- for use by Ada

begin -- T.TEST

TEXTIO.CREATE (FILE => BFILE,
-- Ada file is BFILE

MODE => TEXTIO.OUTFILE,
-- MODE is WRITE only

NAME => "txt-file",
-- External file "txt-file"

FORM => "BUFFER.SIZE => 8192"

-- Buffer size is 8192 bytes

end TTEST;

8-24 Implementation-Dependent Input-Output Appendix F - Ada/300

F 8.2.5 The FORM P3rameter Attribute - File Sharing

The file sharing attribute of the FORM parameter allows you to specify what
kind of sharing is permitted when multiple file objects access the same external
file. This control over file sharing is not system-wide, but is limited to a single
Ada program. The HP-UX operating system controls file sharing at the system
level. See section F 8.1.5 for information on system level file sharing between
separate programs.

An external file can be shared; that is, the external file can be associated
simultaneously with several logical file objects created by the OPEN or CREATE
procedures. The file sharing attributes forbids or limits this capability by
specifying one of the modes listed in table 8-4.

Table 8-4. File Sharing Attribute Modes

Mode Description

NOT-SHARED Indicates exclusive access. No other logical file can
be associated with the external file.

SHARED=> READERS Only logical files of mode IN can be associated with
the external file.

SHARED=> SINGLEWRITER Only logical files of mode IN and at most one file
with mode OUT can be associated with the external
file.

SHARED=> ANY No restrictions; this is the default.

Appendix F - Ada/300 Implementation-Dependent Input-Output 8-25

A USE.ERROR exception is raised if either of the following conditions exists for
an external file already associated with at least one logical Ada file:

" The OPEN or CREATE call specifies a file sharing attribute different than the
current one in effect for this external file. Remember the attribute SHARED =>
ANY is provided if the shared attribute is missing from the FORM parameter.

" A RESET call that changes the MODE of the file and violates the conditions
imposed by the current file sharing attribute (that is, if SHARED => READERS
is in effect, the RESET call cannot change a reader into writer).

The current restriction imposed by the file sharing attribute disappears when
the last logical file linked to the external file is closed. The next call to CREATE
or OPEN can and does establish a new file sharing attribute for this external file.
See section F 8.1.8 for information about potential problems with I/O from
Ada tasks.

F 8.2.5.1 Interaction of File Sharing and File Buffering

For files that are not buffered (the default), multiple I/O operations on an
external file shared by several file objects are processed in the order they occur.
Each Ada I/O operation will be translated into the appropriate HP-UX system
call (read(2), write(2), creat(2), open(2), or close(2)) and the external
file will be updated by the HP-UX I/O runtime. Note that if file access is
performed across a network device, the external Mile may not be immediately
updated. However, additional I/O operations on the file will be queued and
must wait until the original operation has completed. This allows multiple
readers and multiple writers for the external file.

For files that are buffered, multiple I/O operations each operate sequentially
only within the buffer that is associated with the file object and each file object
has its own buffer. For writt operations, this buffer is flushed to the disk either
when the buffer is full, or when the file index is positioned outside of the buffer,
or when the file is closed. The external file only reflects the changes made by
a write operation after the buffer is flushed to the disk. Any accesses to the
external file that occur before the buffer is flushed will not reflect the changes
made to the file that exist only in the buffer.

8-26 Implementation-Dependent Input-Output Appendix F - Ada/300

Due to this behavior, shared files should not be buffered if any write operations
are to be performed on this file. This would be the case for file objects of the
mode OUT-FILE or INOUTFILE. Thus, when using buffered files safely, no
writers are allowed, but multiple readers are allowed.

File buffering is enabled by using the FORM parameter attributes at the time
you open or create the file. If file buffering is enabled for a file, you should also
specify a file sharing attribute of either NOT-SHARED or SHARED=>READERS to
prevent the effects of file buffering and file sharing interfering with one another.
The Ada runtime will raise the exception USE-ERROR if any attempt is made
to share the file or to share and write the file, when the above file sharing
attributes are provided as FORM parameters.

If the possibility of shared access exists in your Ada program for sequential
devices or interactive devices, you should specify a file sharing attribute of
NOT-SHARED. This will prevent the negative.effects of file sharing on these kinds
of devices.

F 8.2.6 The FORM Parameter - Appending to a File

The APPEND attribute can only be used with the procedure OPEN. Its format is:

APPEND

Any output will be placed at the end of the named external file.

Under normal circumstances, when an external file is opened, an index is set
that points to thp beginning of the file. If the APPEND attribute is present for a
sequential or text file, data transfer begins at the end of the file. For a direct
access file, the value of the index is set to one more than the number of records
in the external file.

The APPEND attribute is not applicable to terminal devices.

Appendix F - Ada/300 Implementation-Dependent Input-Output 8-27

F 8.2.7 The FORM Parameter Attribute - Blocking

This attribute has two alternative forms:

BLOCKING

or

NON-BLOCKING

F 8.2.7.1 Blocking

If the blocking attribute is set, the read or write operation will cause the
HP-UX process to block until the read or write request is satisfied. This nians
that all Ada tasks are blocked from running until the data transfer is complete.

The default for this attribute depends on the actual program. The default is
BLOCKING for programs without any task declarations and is NON-BLOCKING for
a program containing tasks. This allows tasking programs to take advantage of
their parallelism in the presence of certain I/O requests. There is no advantage
in specifying NON-BLOCKING for a non-tasking program because the program
must wait for the I/O request to complete before continuing its sequential
execution.

F 8.2.7.2 Non-Blocking

The NON-BLOCKING attribute specifies that when a read request cannot be
immediately satisfied, the Ada runtime should schedule another task to run
and retry the read operation later. This attribute is currently only applicable
for terminal devices and pipes. In the case of a pipe, a write request may also
cause the current task to be rescheduled, and another task will run while the
p ipe buffer is full. This attribute sets the ONONDELAY flag in the HP-UX file
descriptor and allows the HP-UX process to continue running if there is no
data available to be read from the terminal or pipe.

8-28 Implementation-Dependent Input-Output Appendix F - Ada/300

F 8.2.8 The FORM Parameter - Terminal Input

The terminal input attribute takes one of two alternative forms:

TERMINAL-INPUT => LINES,

TERMINAL-INPUT => CHARACTERS,

Terminal input is normally processed in units of one line at a time. A process
attempting to read from the terminal as an external file is suspended until a
complete line has been typed. At that time, the outstanding read call (and
possibly also later calls) is satisfied.

The LINES option specifies a line-at-a-time data transfer, which is the default
case.

The CHARACTERS option means that data transfers character by character, and
so a complete line does not have to be entered before the read request can be
satisfied. For this option, the BUFFER-SIZE must be zero.

When the CHARACTERS option is specified, the ICANON bit is cleared in the
c-lflag component of the HP-UX termio structure. This bit changes the line
discipline for the terminal device. Be aware that the line discipline statue is
not maintained on a per file basis. Changing the line discipline for one terminal
file does effect other terminal files that are actually associated with the same
physical terminal device. See termio(7) for additional information.

The TERMINAL-INPUT attribute is only applicable to Ada files objects
other than STANDARDINPUT. The Ada runtime system uses the default
TERMINAL-INPUT of LINES for the Ada file object STANDARD-INPUT. The file
name /dev/tty can be used with the appropriate FORM parameter to achieve
single character I/O on the program's controlling terminal (which is the same
terminal that STANDARD-INPUT is associated with if STANDARD-INPUT has not
been redirected.)

Appendix F - Aria/300 Implementation-Dependent Input-Output 8-29

F 8.2.9 The FORM Parameter Attribute - File Structuring

This section describes the structure of Ada files. It also describes how to use
the FORM parameter to effect the structure of Ada files.

F 8.2.9.1 The Structure of TEXT-1O Files

There is no FORM parameter to define the structure of text files. A text file
consists of a sequence of bytes containing ASCII character codes.

The usage of Ada terminators depends on the file's mode (IN-FILE
or OUT-FILE) and whether it is associated with a terminal device or a
mass-storage file.

8-30 Implementation-Dependent Input-Output Appendix F - Ada/300

Table 8-5 describes the use of the ASCII characters as Ada terminators in text
files.

Table 8-5. Text File Terminators

File Type TEXT-1O Characters
Functions

Mass storage files ENDCFLINE ASCII.LF
(IN-FILE) Physical end of file

ENDOFPAGE ASCII.LF ASCII.FF
ASCII.LF Physical end of file
Physical end of file

ENDOFFILE ASCII.LF Physical end of file
Physical end of file

Mass storage files NEW-LINE ASCII.LF
(OUT-ILE) NEWPAGE ASCII.LF ASCII.FF

ASCII.LF Physical end of file

CLOSE ASCII.LF Physical end of file

Terminal device ENDOFLINE ASCII.LF
(IN-FILE) ASCII.FF

ASCII .EOT

ENDOFPAGE ASCII.FF
ASCII. EOT

ENDOFFILE ASCII. EDT

Terminal device NEW-LINE ASCII. LF
(OUT-FILE)

NFWPAGE ASCII.LF ASCII.FF

CLOSE ASCII.LF

See sect,on F S.1.3.3 for more information about terminators in text files.

Appendix F - Ada/300 Implementation-Dependent Input-Output 8-31

F 8.2.9.2 The Structure of DIRECTIO and SEQUENTIALIO Files

This section describes use of the FORM parameter for binary (sequential or
direct access) files. Two FORM attributes, RECORD-SIZE and RECORD-UNIT,
control the structure of binary files.

Such a file can be viewed as a sequence or a set of consecutive RECORDS. The
structure of a record is

" HEADER I OBJECT C UNUSED-PART]

A record is composed of up to three items:

3 1. A HEADER consisting of two fields (each 32 bits):

. The length of the object in bytes.
m The length of the descriptor in bytes; for this implementation of Ada, the

length is always zero.

2. An OBJECT with the exact binary representation of the Ada object in the
executable program, possibly including an object descriptor.

3. An UNUSED.PART of variable size to permit full control of the record's size.

The HEADER is implemented only if the actual parameter of the instantiation of

the I/O package is unconstrained.

The file structure attributes take the form:

RECORD-SIZE -> size-in.bytes

RECORD.UNIT => size.in-bytes

The attributes' meaning depends on the object's type (constrained or
unconstrained) and the file access mode (sequential or direct access).

8-32 Implementation-Dependent Input-Output Appendix F - Ada/300

There are four types of access that are possible:

" Sequential access of fixed size, constrained objects.

" Sequential access of varying size, unconstrained objects, with objects rounded
up to a multiple of the RECORD-UNIT size.

" Direct access of fixed size, constrained objects.

" Direct access of fixed size, unconstained objects, with a maximum size for the
object.

The consequences of the above are listed in table 8-6.

Table 8-6. Structuring Binary Files with the FORM Parameter

Object Type File Access RECORD-UNIT RECORD-SIZE
Mode Attribute Attribute

Constrained Sequential I/O The RECORD-UNIT If the RECORD-SIZE
Direct I/O attribute is illegal, attribute is omitted, no

U.USED.._PART is

implemented. The
default RECORD-SIZE is
the object's size.
If present, the
RECORDSIZE attribute
must specify a record
size greater than or
equal to the object's
size. Otherwise, the
exception USE-ERROR is
raised.

Continued on the next page

Appendix F - Ada/300 Implementation-Dependent Input-Output 8-33

Table 8-6.
Structuring Binary Files with the FORM Parameter (Continued)

Object Type File Access RECORD-UNIT RECORD-SIZE
Mode Attribute Attribute

Unconstrained Sequential I/O By default, the The RECORDSIZE
RECORD-TIT attribute attribute is illegal.
is one byte.

The size of the record is
the smallest multiple of
the specified (or default)
RECORD-UNIT that holds
the object and its eight
byte HEADER (which is
always present in this
case). This is the only
case where different
records in a file can have
different sizes.

Continued on the next page

8-34 Implementation-Dependent Input-Output Appendix F - Ada/300

Table 8-6.
Structuring Binary Files with the FORM Parameter (Continued)

Object Type File Access RECORD-UNIT RECORD-SIZE
Mode Attribute Attribute

Unconstrained Direct I/O The RECORDUNIT The RECORD-SIZE
attribute is illegal, attribute has no default

value, and if a value is
not specified, the
exception USE-ERROR is
raised. The
RECORDSIZE value must
include the size of the
eight byte HEADER, which
is always present in this
case. The minimum
value for RECORDSIZE

for a file of objects of the
unconstrained type
OBJECT is listed below
this table. If you
attempt to input or
output an object larger
than the given
RECORDSIZE, a
DATA-ERROR exception is
raised.

The minimum value for RECORD-SIZE for a file of objects of the unconstrained
type OBJECT is:

((OBJECT'SIZE + SYSTEM.STORAGE.UNIT - 1) / SYSTEM.STORAGEUNIT) + 8

Appendix F - Ada/300 Implementation-Dependent Input-Output 8-35

9
F 9. The Ada/300 Development System and
HP-UX Signals

The Ada/300 runtime on the HP 9000 Series 300 uses HP-UX signals to
implement the following features of the Ada language:

" Ada exception handling
" Ada task management
" Ada delay timing
" Ada program termination
" Ada interrupt entries

Appendix F - Ada/300 Ada/300 and HP-UX Signals 9-1

| F 9.1 HP-UX Signals Reserved by the Ada/300 Runtime

I Table 9-1 lists the HP-UX signals reserved and used by the Ada runtime.

Table 9-1. Ada/300 Signals

Signal Description

I SIGALRM Used for delay and optionally for time-slicing.

I SIGVTALRM Optionally used for time-slicing (default time-slicing signal).

SIGPROF Optionally used for time-slicing

SIGILL Causes the exceptions CONSTRAINT_ERROR or NUMERIC-ERROR.

SIGSEGV Causes the exceptions PROGRAM-ERROR or STORAGE-ERROR.

SIGBUS U:ed to implement raise statements. Also used to raise
predefined exceptions when run time checking is enabled.

SIGFPE Causes a NUMERIC-ERROR exception.

9-2 Ada/300 and HP-UX Signals Appendix F - Ada/300

Note The alarm signals SIGALIM, SIGVTALRM, and SIGPROF are not
used or reserved in a non-tasking program. These signals are
only sometimes used or reserved in a tasking program. See the
rest of this section for details.

The HP-UX signals SIGALRM, SIGVTLARM, and SIGPROF are reserved by the Ada
runtime for some Ada application program configurations and are not reserved
by the Ada runtime for other Ada application program configurations.

In summary, if the Ada program contains no tasks, the following is true:

If the Ada program contains
no delay statements one or more delay

statements
SIGALRM not reserved SIGALRM reserved
SIGVTALRM not reserved SIGVTALRM not reserved
IGPROF not reserved SIGMPROF not reserved

Appendix F - Ada/300 Ada/300 and HP-UX Signals 9-3

If the Ada program contains tasks, the following is true:

If the Ada program contains

no delay statements one or more delay
statements

If time-slicing SIGALRM not reserved SIGALRM reserved

is disabled with SICVTALRM not reserved SIGVTALRM not reserved

-W b,-s,O SIGPROF not reserved SIGPROF not reserved

If time-slicing SIGALRM reserved SIGALRM reserved

is enabled with SIGVTALRM not reserved SIGVTALRM not reserved

SIGALRM timer SIGPROF not reserved SIGPROF not re.erved
with -W b,-S,,a

If time-slicing SIGALRM not reserved SIGALRM reserved

is enabled with SIGVTALRM reserved SIGVTALRM reserved

SIGVTALRM timer SIGPROF not reserved SIGPROF not reserved

with -W b,-S, v

If time-slicing SIGALRM not reserved SIGALRM reserved

is enabled with SIGVTALRM not reserved SIGVTALRM not reserved

SICPROF timer SIGPROF reserved SIGPROF reserved

with -W b,-Sp

If a timer signal is not reserved in an application program configuration shown

above, the signal can be used for any application-defined purpose, including

being associated with an interrupt entry (see F 9.7 for details.)

9-4 Ada/300 and HP-UX Signals Appendix F - Ada/300

F 9.2 Using HP-UX Signals in External Interfaced
Subprograms
When your Ada code uses external interfaced subprograms, you must tal'a the
following into consideration:

" If the external interfaced subprograms want to manipulate any of the
signals reserved by the Ada runtime, they use the sigvector and
sigsetmask(2)/sigblock(2) mechanism or a compatible mechanism. Using
the non-compatible signal(2) mechanism reight produce unpredictable
program behavior.

" If the external interfaced subprograms change the signal handling acion
(that is, SIG-DEL, SIGIGN, or user handler) for any HP-UX signal reserved
by the Ada runtime, or original signal handling action is restored before
returning control to Ada code. Failure to restore the Ada signal action will
produce unpredictable program behavior.

" If the external interfaced subprograms change the signal mask bits of any of
the HP-UX signals reserved by the Ada runtime, the original mask bits for
those signals must be restored before returning control to Ada code. Failure
to restore the original signal mask will produce unpredicable program I
behavior.

Additional considerations are detailed in section F 11.7, "Potential Problems
Using Interfaced Subprograms".

Appendix F - Ada/300 Ada/300 and HP-UX Signals 9-5

F 9.3 HP-UX Signals Used for Ada/300 Exception Handling
The Ada/300 implementation used signals to raise exceptions. The Ada
runtime handlers for these signals are set during the elaboration of the Ada
runtime system. Defining a new handler for any of these signals subverts the
normal exception handling mechanism of Ada and will most likely result in an
erroneous runtime execution.

I If your Ada program uses external interfaced subprograms, you must ensure
that these external interfaced subprograms do not redefine the signal behavior
for any of the HP-UX signals reserved by the Ada runtime. If you change
the signal behavior for the signals used for Ada exception handling (SIGBUS,
SIGILL, SIGFPE, or SIGSEGV) and your Ada program attempts to raise an
exception, unpredictable program behavior will result.

The following signals have predefined meanings and are reserved for use by the
Ada runtime for exception handling:

* SIGBUS
* SIGILL
" SIGFPE
" SIGSEGV

The signal SIGBUS is generated in your compiled Ada code whenever the
corresponding Ada source code contains an explicit raise statement or when
the compiler needs to raise a predefined exception. The compiled Ada code for
an explicit raise statement will contain a branch to an odd address, which
will cause the SIGBUS signal. The compiled Ada code for a run time check
that raises a predefined exception will contain a conditional branch to an odd
address, which will cause the SIGBUS signal. An unexpected SIGBUS signal that
was generated outside of Ada code or was not generated by a branch to an odd
address will cause the exception PROGRAM-ERROR to be raised.

9-6 Ada/300 and HP-UX Signals Appendix F - Ada/300

The signal SIGILL is generated in your compiled Ada code when one of the
predefined run time checks fails. The MC68OxO instructions CHK and TRAPV
are occasionally used in compiled Ada code and generate the SIGILL signal.
The CHK instruction will generate the exception CONSTRAINT-ERROR, while the
TRAPV instruction will generate the exception NUMERIC-ERROR. An unexpected
SIGILL that was generated outside of Ada code will cause the exception
PROGRAM-ERROR to be raised.

The signal SIGFPE is generated in your compiled Ada code when a floating
point division by zero occurs. Any other SIGFPE signal not caused by a divide
by zero is an unexpected signal and will cause the exception PROGRAM-ERROR to
be raised.

The signal SIGSEGV can be generated in your compiled Ada code when the
stack of the main subprogram (the environment task stack space) grows too
large. The Ada runtime will attempt to extend the size of this stack and
continue program execution. If insufficient memory is available, the exception
STORAGE-ERROR is raised. The Ada runtime system cannot dynamically extend
the stack space for a child task stack. See section F 4.6 for more information
on specifying child task stack sizes.

The signal SIGSEGV can also be generated when an object of an access type
denotes an illegal address. Normally this will not be the case in an Ada
program because an access type object is automatically initialized to null.
However, using UNCHECKED-CONVERSION will greatly increase the possibility
that a SIGSEGV signal can occur inside your Ada program. A SIGSEGV signal
will cause the exceptioP PROGRAM-ERROR to be raised in your Ada program.

Appendix F - Ada/300 Ada/300 and HP-UX Signals 9-7

I F 9.4 HP-UX Signals Used for Ada/300 Task Management
When an Ada program contains tasks and time-slicing was enabled (or enabled
by default) at bind time, the Ada runtime system uses one of SIGALRM,
SIGVTALRM (the default), or SIGPROF to control the time-slice interval. The
Ada runtime allocates the available processor time among ready-to-run tasks
by giving each task one or more time-slice intervals.

When an Ada program does not contai: tasks, or contains tasks but
time-slicing was disabled at bind time, neither SIGVTALRM nor SIGPROF
is reserved bY the Ada runtime. If an Ada program contains tasks but
time-slicing i; disabled, SIGALRM may or may not be reserved (see F 9.1,
"HP-UX Signals Reserved by the Ada Runtime", for more information).

If your Ada pTograrn uses external interfaced subprograms, you must ensure
that these external interfaced subprograms do not redefine the signal behavior
for any of the HP-UX signals reserved by the Ada runtime. If you change
the signal behavior for the signal used for Ada task management (SIGALRM.
SIGVTALFM, or SIGPROF) and your Ada program is using time-slicing,
unpredictable program behavior will result.

9-8 Ada/300 and HP-UX Signals Appendix F - Ada/300

F 9.5 HP-UX Signals Used for Ada/300 Delay Timing
When an Ada program contains tasks and a delay statement is executed. the
Ada run ime system uses b!GALRM to time the delay interval. The resolution
of the SIGALRM timer is 1/50 of a second. Thus, all delay statements are
implemented using actual delays that are integral multiples of 1/50 of a second.
Non-zero delays for periods smaller than 1/50 of a second will delay for at least
1/50 of a second. Zero delays will not cause an actual delay, but will provide
an opportunity for the Ada runtime to change the currently running task to a
different task (if appropriate).

When an Ada program does not contain tasks, SIGALRM is not reserved. If
an Ada program contains tasks but does not contain any delay statements,
SIGALRM may or may not be reserved (see F 9.22, "Ada Timer Signals", for
details).

If your Ada program uses external interfaced subprograms, you must ensure
that these external interfaced subprograms do not redefine the signal behavior
for any of the HP-UX signals reserved by the Ada runtime. If you change the
signal behavior used for Ada delay timing (SIGALRM) and your Ada program
contains a delay statement, unpredictable program behavior will result.

Appendix F - Ada/300 Ada/300 and HP-UX Signals 9-9

F 9.6 HP-UX Signals Used for Ada!.300 Program
Termination
The signals SIGHUP, SIGINT, SIGQUIT, SIGTERM, and SIGPIPE are recognized by
the Ada runtime as attempts to terminate the Ada program. The Ada runtime
initially arranges to catch each of these signals. If the Ada runtime catches one
of these signals, Ada runtime cleanup actions are performed and the program
is terminated in such a way that the parent program will see the Ada program
as having been terminated by the signal. The Ada runtime cleanup actions
include flushing file buffers and closing files, as well as restoring terminal
characteristics that have been altered by the Ada I/O system. However, these
signals are not reserved by the Ada runtime and the application is free to use
one or more of these signals for application-defined purposes.

If the application-defined purpose is also to signal that the program should be
terminated, when the application is finished handling the signal it should:

1. Restore the original Ada signal handler (the handler the application saved

when it altered the signal behavior for its own purposes).

2. Ensure that the signal is not masked.

3. Send the same signal to itself again to invoke the Ada runtime signaled
termination process.

9-10 Ada/300 and HP-UX Signals Appendix F - Ada/300

Warning If a signal is not currently reserved by the Ada runtime (see the
appropriate sections of F 9) or is not recognized as an attemptQ to terminate the Ada program (see the list of such signals
above) and is received by the Ada program, the HP-UX action
may be to terminate the program. Such a termination will not oe
intercepted by the Ada runtime and the Ada runtime cleanup
actions will not occur. This could cause corrupted files and/or
corrupted terminal states. If an Ada program is likely to receive
such signals, the program should arrange to ignore or mask
such signals or to catch and handle such signals. If such a
signal terminates the Ada program, the Ada program should

arrange to catch and handle such a signal, and should then send
one of the defined termination signals (see list above) to itself to
trigger the Ada signaled termination process. The Ada program
should ensure that the original Ada handler is in effect for that
terriination signal and that the signal is not masked before
sending the signal to itself.

Appendix F - Ada/300 Ada/300 and HP-UX Signals 9-11

F 9.7 HP-UX Signals Used for Ada/300 Interrupt Entries
Any HP-UX signal that is not reserved by the Ada runtime and that HP-UX
permits to be caught can be associated with an interrupt entry. Interrupt
entries provide a facility equivalent to that described by the Ada RM,
section 13.5.1, although the actual mechanism supplied is more general.

The interrupt entry facility is described in detail in section F 12, "Interrupt
Entries".

The HP-UX signals that are reserved by the Ada runtime are specified earlier
in this section. Those subsections should be consulted to determine which
signals can be safely associated with interrupt entrie:. The interrupt entry
mechanism will actually not prohibit the use of signals reserved by the Ada
runtime, but using such signals for interrupt entries will cause unpredictable
program behavior.

Warning Associating an interrupt entry with a HP-UX signal that can be
invoked synchronously (that is, by the execution of faulty code9within the Ada program) should only be done with a thorough
understanding of the behavior of the underlying hardware and
of the behavior of HP-UX in the presence of such faults. Failure
to correctly adjust the execution context before resuming
after such faults can lead to repeated occurrances of the fault
condition and/or other unpredictable program behavior.

9-12 Ada/300 and HP-UX Signals Appendix F - Ada/300

F 9.8 Protecting Interfaced Code from Ada/300's
Asynchronous Signals
The SIGALRM, SIGVTALRM, and SIGPROF signals (mentioned above) occur
asynchronously. Because of this, they may occur while your code is executing
an external interfaced subprogram. For details on protecting your external
interfaced subprogram from adverse effects caused by these signals, see the
section in the Ada 300 User's Guide on "Interfaced Sabprograms and Ada's I
Use of Signals."

F 9.9 Programming in Ada/300 With HP-UX Signals
If you intend to utilize signals in external interfaced subprograms, refer to
section F 11.7, "Potential Problems Using Interfaced Subprograms." This
version of HP Ada supports the association of an HP-UX signal, such as
SIGINT, with an Ada signal handling proced, re (and via such a procedure
with a task entry). Refer to section F 9.7, "HP-UX Signals Used for Ada/300
Interrupt Entries" and section F 12, "Interrupt Entries" for additional
information.

Appendix F - Ada/300 Ada/300 and HP-UX Signals 9-13

10
F 10. Limitations

This chapter lists limitations f the compiler and the Ada development
environment.

F 10.1 Compiler Limitations

Note It is impossible to give exact numbers for most of the limits
a listed in this section. The various language features may

interact in complex ways to lower the limits.

The numbers rpresent "hard" limits in simple program
fragments devoid of other Ada features.

Appendix F - Ada/300 Limitations 10-1

Limit Description

255 Maximum number of characters in a source line,

253 Maximum number of characters in a string literal.

255 Maximum number of characters in an enumeration type element.

32767 In an enumeration type, the sum of the lengths of the IMAGE attributes
of all elements in the type, plus the number of eler,,nts in the type,
must not exceed this value.

2047 Maximum number of actual compilation units in a library.

32767 Maximum number of enumeration elements in a single enumeration
type (this limit is further constrained by the maximum number of
characters for all enumeration literals of the type).

2047 Maximum number of "created" units in a single compilation.

2**31-1 Maximum number of bits in any size computation.

2048 Links in a library.

2048 Libraries in the INSTALLATION family (250 of which are reserved).

2047 Libraries in either the PUBLIC or a user defined family. (For more
information, see the Ada User's Guide, which discusses familic., of Ada
libraries and the supported utilities (tools) to manage them).

- Maximum number of tasks is limted only by heap size.

255 Maximum number of characters in any path component of a file
specified for access by the Ada compiler. If a component exceeds 255
characters, NAME_ERROR will be raised.

1023 The maximum number u," characte-s in the entire oath to a file
specified for access by the Ada compiler. If the size of the entire path
exceeds 1023 characters, NAME-ERROR will be raised.

The pathname limits apply to the entire path during and after the
resolution of symbolic links and context-dependent files (CDFs) if they
appear in the specified path.

10.2 Limitat!ons Appendix F - Ada/300

The following items are limited only by overflow of internal tables (AIL or
HLST tables). All internal data structures of the compiler that previously
placed fixed limits are now dynamically created.

Maximum number of identifiers in a unit. An identifier includes
enumerated type identifiers, record field definitions, and (generic) unit
parameter definitions.

Maximum "structure" depth. Structure includes the following: nested
blocks, compound statements, aggregate associations, parameter
associations, subexpressions.

Maximum array dimensions. Set to maximum structure depth/10 t

Maximum number of discriminants in a record constraint.

Maximum number of associations in a record aggregate t

Maximum number of parameters in a subprogram definition. t

Maximum expression depth. t

Maximum number of nested frames. Library-level unit counts as a
frame.

Maximum number of overloads per compilation unit

Maximum number of overloads per identifier.

t A limit on the size of tables used in overloading resolution can potentially
lower this figure. This limit is set at 500. It reflects the number of possible
interpretations of names in any single construct under analysis by the compiler
i procedure call. assignment statement, and so on.)

Appendix F Ada/300 Limitations 10-3

F 10.2 Ada Development Environment Limitations
The following limits apply to the Ada development environment (ada. umgr (1),
ada.fmgr(1), and Ada tools).

Limit Description

200 The number of characters in the actual rooted path of an Ada program
LIBRARY or FAMILY of libraries.

200 The number of characters in the string (possibly after expansion by an
HP-UX shell) specifying the name of an Ada program LIBRARY or
FAMILY of libraries. This limit applies to strings (pathname
expressions) specified for a LIBRARY or FAMILY that you submit to tools
such as ada.mklib(l) or ada.umgr(1).

512 Maximum length of an input line for the tools ada.fmgr(1) and
,4da.umgr(l).

")r,5 The maximum number of characters in any path component of a file
specified for access by an Ada development environment tool. if a
component exceeds 255 characters, NAME-ERROR will be raised.

1023 The maximum number of characters in the entire path to a file
specified for access by an Ada program or an Ada development
environment tool. If the size of the entire path exceeds 1023 characters,
NAME-ERROR will be raised.

The pathname limits apply to the entire path during and after the
resolution of symbolic links and context-dependent files (CDFs) if they
appear in the specified path.

10-4 Limitations Appendix F - Ada/300

F 10.3 Limitations Affecting User-Written Ada
Applications
The A da/300 compiler and Ada development environment is expected to be
used on versions of the HP-UX operating system that support Network File
Systems (NFS), diskless HP-UX workstations, long filename file systems and
symbolic links to files. To accomodate this diversity within a file system used
in both the development and target systems, the HP Ada compiler places some
restrictions on the use of the OPEN and CREATE on external files. This section
describes those restrictions.

F 10.3.1 Restrictions Affecting Opening or Creating Files

Unless you observe the following restrictions on the size of path components
and file names, the OPEN or CREATE call will raise NAME-ERROR in certain
situations.

F 10.3.1.1 Restrictions on Path and Component Sizes

The maximum number of characters in any path component of a file specified
for access by an Ada program is 255.

The maximum number of characters in the entire path to a file specified for
access by an Ada program is 1023.

The pathname limits apply to the entire path during and after the resolution
of symbolic links and context-dependent files (CDFs) if they appear in the
specified path.

F 10.3.1.2 Conditions that Raise NAME-ERROR

When using OPEN and CREATE, the Ada exceptioh NAME-ERROR will be raised if
any path component exceeds 255 characters or if the entire path exceeds 1023
characters.

Appendix F - Ada/300 Limitations 10-5

When opening a file, the Ada exception NAME-ERROR will be raised if there
arp any directories in the rooted path of the file that are not readable by the
"F .ctive uid" of the program. This restriction applies to intermediate path
components that are encountered during the resolution of symbolic links.

F 10.3.2 Restrictions on TEXTO.FORM

The function TEXT.IO .FORM will raise USE-ERROR if it is called with either of
the predefined files STANDARD-INPUT or STANDARD-OUTPUT.

F 10.3.3 Restrictions on the Small of a Fixed Point Type

A length clause may be used to specify the value to use for 'SMALL on a fixed
point type. However, this implementation requires that the value specified
for 'SMALL is a power of two. The compiler rejects a compilation unit with a
length clause specification with an IMPLEMENTATION RESTRICTION if 'SMALL is
not an exact power of two.

(Delete section titled "Record Type Change of Representation")

F 10.3.4 Record Type Alignment Clause

A record type alignment clause can specify that a record type is either
byte-aligned or word-aligned. Word alignment is 2-byte or 16-bit alignment.
This release of the Ada/300 DS does not support 32-bit alignment. The largest
alignment possible in this version of the Ada/300 DS is 16-bit alignment.

10-6 Limitations Appendix F -Ada/300

F 10.3.5 Pragma INTERFACE on Library Level Subprograms

In the current version of the compiler, it is not possible to supply a pragma
INTERFACE to a library-level subprogram. Any subprogram that a pragma
INTERFACE is applied to must be contained within an Ada compilation unit,
usually a package.

Appendix F - Ada/300 Limitations 10-7

11

F 11. Calling External Subprograms From Ada

In Ada/300, parameters of external interfaced subprograms are passed on
the stack in reverse order of their declaration. The first parameter appears
at the top of the stack. This same ordering is used by Hewlett-Packard for
other language products on the HP 9000 Series 300 family of computers.
The languages described in this section are HP implementations of 680X0
Assembler, C, FORTRAN 77, and Pascal on the HP-UX Series 300 systems.

In some cases, the interface requires not only the parameters but additional
information to be pushed on the stack. This information can include a
parameter count, a return result pointer, or other bookkeeping information.

When you specify the interfaced language name, that name is used to select
the correct calling conventions for supported languages. Then, subprograms
written in HP C, HP FORTRAN 77, and HP Pascal interface correctly with
the Ada/300 subprogram caller. This section contains detailed information
about calling subprograms. If the subprogram is written in a language fromanother vendor, you must follow the standard calling conventions.

In the Ada/300 implementation of external interfaced subprograms, the three
Ada parameter passing modes (in, out, in out) are supported, with some
limitations as noted below. Scalar and access parameters of mode in are
passed by value. All other parameters of mode in are passed by reference.
Parameters of mode out or in out are always passed by reference. (See table
11-1 and section F 11.1.2 for details.)

Appendix F - Ada/300 Calling External Subprograms 11-1

Table 11-1. Ada Types and Parameter Passing Modes

Ada Type Mode Passed Mode Passed
By Value By Reference

SCALAR, in out, in out
ACCESS

All others except in, out, in out
TASK and FIXED
POINT

TASK and FIXED (not passed) (not passed)
POINT III

The values of the following types cannot be passed as parameters to an
external interfaced subprogram:

" Task types (Ada RM, sections 9.1 and 9.2),

" Fixed point types (Ada RM, sections 3.5.9 and 3.5.10).

A composite type (an array or record type) is always passed by reference (as
noted above). A component of a composite type is passed according to its type
classification (scalar, access, or composite).

Only scalar types (enumeration, character, Boolean, integer, or floating point)
or access types are allowed for the result returned by an external function
subprogram.

11-2 Calling External Subprograms Appendix F - Ada/300

Note There are no checks for consistency between the subprogram
parameters (as declared in Ada) and the corresponding external
subprogram parameters. Because external subprograms have
no notion of Ada's parameter modes, parameters passed by

reference are not protected from modification by an external
subprogram. Even if the parameter is declared to be only of
mode in (and not out or in out) but is passed by reference
(that is, an array or record type), the value of the Ada actual
parameter can still be modified.

The possibility that the parameter's actual value will be
modified by an external interfaced subprogram exists when
that parameter is not passed by value. Objects whose attribute
IADDRESS is passed as a parameter and parameters passed by
reference are not protected from alteration and are subject to
modification by the external subprogram. In addition, such
objects will have no run-time checks performed on their values
upon return from interfaced external subprograms.

Erroneous results may occur if the parameter values are altered
in some way that violates Ada constraints for the actual Ada
parameter. The responsibility is yours to ensure that values
are not modified in external interfaced subprograms in such a
manner as to subvert the strong typing and range checking
enforced by the Ada language.

Appendix F - Ada/300 Calling External Subprograms 11-3

Caution Be very careful to establish the exact nature of the types of
parameters to be passed. The bit representations of these types
can be different between this implementation of Ada and other
languages, or between different implementations of the Ada
language. For example, in other vendors' implementation of
Ada on the HP 9000 Series 300, the size of the predefined
standard INTEGER type can be 16 bits, which is smaller than
the Hewlett-Packard implementation size of 32 bits. Pay careful
attention to the size of parameters because stacked values
must occupy equal space in the interfaced language. When
passing record types, pay particular attention to the internal
organization of the elements of a record because Ada semantics
do not guarantee a particular order of components. Moreover,
Ada compilers are free to rearrange or add components within
a record. See section F 4, "Type Representation", for more
information.

11-4 Calling External Subprograms Appendix F - Ada/300

F 11.1 General Considerations in Passing Ada Types
Section F 11.1 discusses each data type in general terms. Sections F 11.2
through F 11.5 describe the details of interfacing your Ada programs with
external subprograms written in HP Assembler, HP C, HP FORTRAN 77, and I
HP Pascal. Section F 11.6 provides summary tables.

The Ada types are described in the following order:

" Scalar

o Integer
o Enumeration
c Boolean
o Character
o Real

" Access

" Array

" Record

" Task

F 11.1.1 Scalar Types

This section describes general considerations when you are passing scalar types
between Ada programs and subprograms written in a different HP language.
The class scalar types includes integer, real, and enumeration types. Because
character and Boolean types are predefined Ada enumeration types, they are
also scalar types.

Scalar type parameters of mode in are passed by value. Scalar type parameters
of mode in out or out are passed by reference.

Appendix F - Ada/300 Calling External Subprograms 11.5

F 11.1.1.1 Integer Types

I In Ada/300, all integers are represented in two's complement form. The
type SHORT_.SHORT-_INTEGER is represented as an 8-bit quantity., the type
SHORTINTEGER is represented as a 16-bit quantity, and the type INTEGER is
represented as a 32-bit quantity.

All integer types can be passed to interfaced subprograms. When an integer
is used as a parameter for an interfaced subprogram, the call can be made
either by reference or by value. For a call by reference, the value of the actual
integer parameter is not copied or modified, but a 32-bit address pointer is
pu;hcd on the stack. For a call by value, a copy of the actual integer parameter
value is pushed on the stack, with sign extensions as necessary to satisfy the
requirements of the external subprogram. See sections F 11.2.1.1, F 11.3.1.1,
F 11.4.1.1, and F 11.5.1.1 for details specific to interfaced subprograms written
in different languages.

Integer types may be returned as function results from external interfaced
subprograms.

F 11.1.1.2 Enumeration Types

Values of an enumeration type (Ada RM, section 3.5.1) without an
enumeration representation clause (Ada RM, section 13.3) have an internal
representation of the value's position in the list of enumeration literals defining
the type. These values are non-negative. The first literal in the list corresponds
to an integer value of zero.

An enumeration representation clause can be used to further control the
mapping of internal codes for an enumeration identifier. See section F 4.1,
"Enumeration Types," for information on enumeration representation clauses.

Values of enumeration types are represented internally as either an 8-,
16-, or 32-bit quantity (see section F 4.1, "Enumeration Types") and are
passed according to the convention given previously for integer values. See
sections F 11.2.1.1, F 11.3.1.1, F 11.4.1.1, and F 11.5.1.1 for details specific to
interfaced subprograms written in different languages.

Enumeration types may be returned as function results from external interfaced
subprograms.

11-6 Calling External Subprograms Appendix F - Ada/300

F 11.1.1.3 Boolean Types

The values of the predefined enumeration type BOOLEAN are represented in
Ada/300 as 8-bit values. The Boolean value FALSE is represented by the
8-bit value zero and the Boolean value TRUE is represented by the 8-bit value
2#111._1111#. This is not the same as other enumeration types that occupy
eight bits in Ada, where the position in the enumeration list at declaration
defines the internal representation for the element.

When a Boolean is passed by reference, its value is not copied, but a 32-bit
address pointer is pushed on the stack. When a Boolean is passed by value, a
copy is pushed on the stack. The Ada Boolean value occupies one byte, and it
is up to you to ensure that the Boolean is in a correct format for the external
subprogram. Boolean types can be returned as function results from external
interfaced subprograms, with caution as noted above.

See sections F 11.2.1.1, F 11.3.1.1, F 11.4.1.1, and F 11.5.1.1 for details specific
to interfaced subprograms written in different languages.

F 11.1.1.4 Character Types
The values of the predefined enumeration type CHARACTER are represented as

8-bit values in a range 0 through 127.

Values of the character type are passed as parameters and returned as function

results, as are values of any other 8-bit enumeration type.

Character types may be returned as function results from external interfaced
subprograms.

See sections F 11.2.1.1, F 11.3.1.1, F 11.4.1.1, and F 11.5.1.1 for details specific
to interfaced subprograms written in different languages.

Appendix F - Ada/300 Calling External Subprograms 11-7

F 11.1.1.5 Real Types

Ada fixed point types and Ada floating point types are discussed in the
following subsections.

Fixed Point Types

Ada fixed point types (Ada RM, sections 3.5.9 and 3.5.10) are not supported as
parameters or as results of external interfaced subprograms.

Fixed point types cannot be returned as function results from external
interfaced subprograms.

Floating Point Types

Floating point values (Ada RM, sections 3.5.7 and 3.5.8) in the HP
implementation of Ada are of 32 bits (FLOAT) or 64 bits (LONG-FLOAT). These
two types conform to the IEEE Standard for Binary Floating-Point Arithmetic.

The Ada type FLOAT is a 32-bit real type and is passed on the stack in
a 32-bit container; this type is never extended to a 64-bit real. The Ada
type LONG-FLOAT is a 64-bit real type and is passed on the stack in a 64-bit
container. Both floating point types can be passed to interfaced subprograms.
When a floating point value is used as a parameter for an interfaced
subprogram, the call can be made either by reference or by value. If passed
by reference, the value of the actual floating point parameter is not copied
or modified; a 32-bit address pointer to the floating point value is passed. If
passed by value, a copy of the actual floating point parameter value is passed
based on its size on the stack, as indicated above.

See sections F 11.2.1.5, F 11.3.1.5, F 11.4.1.5, and F 11.5.1.5 for details specific
to interfaced subprograms written in different languages.

Floating point types may be returned as function results from external
interfaced subprograms, with some restrictions. See section F 11.3.1.5, "Real
Types and HP C Subprograms," for details.

11-8 Calling External Subprograms Appendix F - Ada/300

F 11.1.2 Access Types

Values of an access type (Ada RM, section 3.8) have an internal representation
which is the 32-bit address of the underlying designated object.

An object's address can be retrieved by applying the 'ADDRESS attribute to the
object. In the case of an access type object, you may want either the address
of the access type object or the address of the underlying object that it points
to. The underlying object's address can be retrieved by applying the attribute
'ADDRESS in this way:

access-object .all' ADDRESS.

The use of .all implies that the 'ADDRESS operation applies to the contents of
the access type object and not to the access type object itself.

An access type object has a value that is the address of the designated object.
Therefore, when an access type is passed by value, a copy of this 32-bit address I
is pushed on the stack. If an access type object is passed by reference, ho",ever.
the address of the access type object itself is pushed on the stack. This will
effectively force references to the designated object to be double indirect
references. See figure 11-1 for details.

Appendix F - Ada/300 Calling External Subprograms 11-9

Insert artwork here.

Figure 11-1. Passing Access Types to tnterfaced Subprograms

Access types may be returned as function results from external interfaced
subprograms.

Ada access types are pointers to Ada objects. In the implementation of
HP Ada for the Series 300 Computer System, an address pointer value will
always point at the first byte of storage for the designated object and not at a
descriptor for the object. This may not be the case for other implementations
of the Ada language and should be considered when Ada source code
portability is an issue.

Note If a pointer to an unconstrained array object is passed to
interfaced code, the information that describes the runtime
constraints needs to be passed explicitly.

11-10 Calling External Subprograms Appendix F - Ada/300

F 11.1.3 Array Types

In the HP implementation of Ada, arrays (Ada RM, section 3.6) are always
passed by reference. The value pushed on the stack is the address of the first
element of the array. When an array is passed as a parameter to an external
interfaced subprogram, the usual checks on the consistency of array bounds
between the calling program and the called subprogram are not enforced. You
are responsible for ensuring that the external interfaced subprogram keeps
within the proper array bou, is. You may need to explicitly pass the upper and
lower bounds for the array type to the external subprogram.

The external subprogram should access and modify such an array in a manner
appropriate to the actual Ada type. Note that Ada will not range check the
values that may have been stored in the array by the external subprogram.
In Ada, range checks are only required when assigning an object with a
constraint; thus, range checks are not performed when reading the value of an
object with a constraint. If an external subprogram modifies elements in an
Ada array object, it has the responsibility to ensure that any values stored
meet the type constraints imposed by the Ada type.

Array element allocation, layout, and alignment are described in section F 4.7,

"Array Types."

Values of the predefined type STRING (Ada RM, section 3.6.3) are
unconstrained arrays and are passed by reference as described above. The
address of the first character in the string is pushed on the stack. You may I
need to explicitly pass the upper and lower bounds or the length of the string
to the external subprogram.

Returning strings from an external interfaced subprogram to Ada (such as OUT
parameters) is not supported. See section F 11.3.3 for a complete example that
shows how to return STRING type information from interfaced subprograms.

Array types cannot be returned zz function results from external interfaced
subprograms. However, an access type to the array type can be returned as a
function result.

Appendix F - Ada/300 Calling External Subprograms 11-11

F 11.1.4 Record Types

I Records (Ada RM, section 3.7) are always passed by reference in the HP
implementation of Ada, pushing the 32-bit address of the first component of
the record on the stack. The external subprogram should access and modify
such a record in a manner appropriate to the actual Ada type. Note that Ada
will not range check the values that may have been stored in the record by the
external subprogram. In Ada, range checks are only required when assigning
an object with a constraint; thus, range checks are not performed when reading
the value of an object with a constraint. If an external subprogram modifies 3
component in an Ada record object, it has the responsibility to ensure that
any values stored meet the type constraints imposed by the Ada ti : e for that
component.

When interfacing with external subprograms using record types, it is
recommended that you provide a complete record representation clause for
the record type. It is also your responsiblity to ensure that the external
subprogram accesses the record type in a manner that is consistent with
the record representation clause. For a complete description of record
representation clauses, see section F 4.8, "Record Types."

If a record representation clause is not used, you should be aware that the
individual components of a record may have been reordered internally by
the Ada compiler. This means that the implementation of the record type
may have components in an different order than the declarative order. Ada
semantics do not require a specific ordering of record components.

When interfacing record types with external subprograms, you may want to
communicate some or all of the offsets of individual record components. One
reason for doing this would be to avoid duplicating the record information in
two places: once in your Ada code and again in the interfaced code. Software
maintenance is often complicated by this practice.

The attribute 'POSITION returns the offset of a record component with respect
to the starting address of the record. By passing this information to the
external subprogram. you can avoid duplicating the record type definition in
your external subprogram.

11-12 Calling External Subprograms Appendix F - Ada/300

The starting address of a record type can be passed to an external subprogram
in one of three ways:

" The record object passed as a parameter (records are always passed by
reference).

" The attribute 'ADDRESS of the record object passed as a parameter.

" A value parameter that is of an access type to the record object.

Direct assignment to a discriminant of a record is not allowed in Ada (Ada
RM, section 3.7.1). A discriminant cannot be passed as an actual parameter of
mod, jut or in out. This restriction applies equally to Ada/300 subprograms I
and to external interfaced subprograms written in other languages. If an
interfaced program is given access to the whole record (rather than individual
components), that code should not change the discriminant value because that
would violate the Ada standard rules for discriminant records.

In Ada/300, records are packed and variant record parts are overlaid; the size I
of the record is the longest variant part. If a record contains discriminants or
composite components having a dynamic size, the compiler may add implicit
components to the record. See section F 4.8, "Record Types," for a complete
discussion of these components.

Dynamic components and components whose size depends upon record
discriminant values are implemented indirectly within the record by using
implicit 'OFFSET components.

Record types cannot be returned as function results from external interfaced
subprograms. However, an access type to the record type can be returned as a
function result.

F 11.1.5 Task Types

A task type cannot be passed to an external procedure or external function as
a parameter in Ada/300. A task type cannot be returned as a function result
from an external function.

Appendix F - Ada/300 Calling External Subprograms 11-13

F 11.2 Calling Assembly Language Subprograms
When calling interfaced assembly language subprograms, specify the named
external subprogram in a compiler directive:

pragma INTERFACE (ASSEMBLER, Ada.subprogram-.name);

Note that the language type specification is ASSEMBLER and not ASSEMBLY.
This description refers to the HP assembly language for the MC680xO
microprocessor family (68K assembly language) upon which the Series 300
family is based.

When calling interfaced 68K assembly language subprograms, scalar and access
parameters of mode in are passed by value; the value of the parameter object
is copied and pushed on the stack. All other types of in parameters (arrays
and records) and parameters of mode out and in out are passed by reference;
the address of the parameter object is pushed on the stack.

When calling 68K assembly language subprograms, the processor scratch
registers are considered to be AO, Al, DO, or D1. In external interfaced 68K
assembly subprograms, processor registers D2 through D7 and A2 through
A7 must be saved on entry and restored before returning to the Ada caller.
The Ada compiler expects those registers to be unchanged across a call to an
external interfaced subprogram. Only registers used in the called 68K assembly
language subprogram must be saved and restored, but you are responsible for
ensuring that all register contents (except for designated scratch registers) are
unchanged. If any of the non-scratch registers are modified by the external
subprogram, unpredictable program behavior might result.

The results returned by external function subprograms are expected to be in
the register DO if the result is scalar, or in register AO if the result is an access
value. LONG.FLOAT values that are represented as 64 bits are returned in two
registers.

Only scalar types (integer, floating point, character, and enumeration types)
and access types are allowed for the result returned by an external interfaced
subprogram written in 68K assembly language.

For more information on 68K assembly language interfacing, see the MC68020
32-Bit Microprocessor User's Manual and the MC68S81 Floating-Point
Coprocessor User's Manual.

11-14 Calling External Subprograms Appendix F - Ada/300

F 11.2.1 Scalar Types and Assembly Language Subprograms

See section F 11.1 for details.

F 11.2.1.1 Integer Types and Assembly Language Subprograms

See section F 11.1.1 for details.

F 11.2.1.2 Enumeration Types and Assembly Language Subprograms

See section F 11.1.1.2 for details.

F 11.2.1.3 Boolean Types and Assembly Language Subprograms

See section F 11.1.1.3 for details.

F 11.2.1.4 Character Types and Assembly Language Subprograms

See section F 11.1.1.4 for details.

F 11.2.1.5 Real Types and Assembly Language Subprograms

See section F 11.1.1.5 for details.

Appendix F- Ada/300 Calling External Subprograms 11-15

F 11.2.2 Access Types and Assembly Language Subprograms

See section F 11.1.2 for details.

F 11.2.3 Array Types and Assembly Language Subprograms

See section F 11.1.3 for details.

F 11.2.4 Record Types and Assembly Language Subprograms

See section F 11.1.4 for details.

11-16 Calling External Subprograms Appendix F - Ada/300

F 11.3 Calling HP C Subprograms
When calling interfaced HP C subprograms, the form

pragma INTERFACE (C, Ada-.subprogram-.name)

is used to identify the need to use the HP C parameter passing conventions.

To call the following HP C subroutine

void c.sub (val-parm, ref.parm)
int val.parm;
int *ref.parm;
{

}

Ada requires an interfaced subprogram declaration:

procedure CSUB (VAL-PARAM in INTEGER;
REFPARAM in out INTEGER);

prag a INTERFACE (C, CSUB);

In the above example we provided the Ada subprogram identifier CSUB to the
pragma INTERFACE. If a pragma INTERFACE-NAME is not supplied, the HP C
subprogram name is the name of the Ada subprogram specified in the pragma
INTERFACE, with all alphabetic characters shifted to lowercase.

Note that the parameter in the preceding example, VALPARAM, must be of
mode in to match the parameter definition for val-parm found in the HP C
subroutine. Likewise, REFPARAM, must be of mode in out to correctly match
the C definition of *ref.parm. Also, note that the names for parameters do not
need to match exactly. However, the mode of access and the data type must be
correctly matched, but there is no compile-time or run-time check that can
ensure that they match. It is your responsibility to ensure their correctness.

You must use pragma INTERFACE-NAME whenever the HP C subprogram name
contains characters not acceptable within Ada identifiers or when the HP
C subprogram name contains uppercase letter or letters. You can also use
a pragma INTERFACE-NAME if you want your Ada subprogram name to be
different than the HP C subprogram name.

Appendix F - Ada/300 Calling External Subprograms 11-17

I The compiler also prefixes the external subprogram name with one underscore
character (-) and will truncate this name to 254 characters if necessary. The
HP C compiler also performs this same transformation. This modification
conforms to the naming conventions used by the HP linker (Id(l) - Link
Editor) on the HP 9000 Series 300 Computer System.

In general, parameters passed to HP C subprograms from HP Ada programs
are passed in 32-bit containers, except for 64-bit real quantities. The Ada/300
compiler does not automatically convert 32-bit real parameters to 64-bit real
parameters. See section F 11.3.1.5, "Real Types and HP C Subprograms," for
details.

Only scalar types (integer, floating point, character, Boolean, and enumeration
types) and access types are allowed as result types for an external interfaced
function subprogram written in HP C.

When binding and linking Ada programs with interfaced subprograms written
in HP C, the libraries libc. a and libm. a are usually required. The Ada/300
binder will automatically provide the -. m -1c directives to the linker. You are
not required to specify -im -1c when binding the Ada program on the ada(l)
command line.

For more information about C language interfacing, see the following manuals:
HP- UX Concepts and Tutorials: Programming Environment, HP- UX Concepts
and Tutorials: Device I/0 and User Interfacing, and HP- UX Portability Guide.
For general information about passing Ada types, see section F 11.1.

F 11.3.1 Scalar Types and HP C Subprograms

See section F 11.1.1 for details.

11.18 Calling External Subprograms Appendix F - Ada/300

F 11.3.1.1 Integer Types and HP C Subprograms

See section F 11.1.1.1 for details.

When passed by value to an HP C subprogram, all integer values are
sign-extended to 32 bits and pushed onto the stack. This method conforms to
the HP C parameter passing convention for signed integers that are passed by
value.

When passed by reference, a 32-bit address pointer to the integer object is
pushed on the stack. The integer object is not sign-extended to 32 bits. This
method conforms to the HP C parameter passing convention for signed integers
that are passed by reference.

When passing integers by reference, note that an Ada SHORTSHORTINTEGER
(eight bits) actually corresponds with the HP C type char, because C treats
this type as a numeric type.

Table 11-2 summarizes the inte-ir correspondence between Ada and C.

Table 11-2. Ada/300 versus HP C Integer Correspondence

Ada HP C Bit Length

CHARACTER char 8

SHORT.SHORTINTEGER char 8

SHORT-INTEGER short and short int 16

INTEGER int, long, and long int 32

All Ada integer types are allowed for the result returned by an external
interfaced subprogram written in HP C if care is taken with respect to
differences in the interpretation of 8-bit quantities.

Appendix F - Ada/300 Calling External Subprograms 11-19

F 11.3.1.2 Enumeration Types and HP C Subprograms

See section F 11.1.1.2 for details.

HP C enumeration types have the same representation as Ada enumeration
types. They both are represented as unsigned integers beginning at zero. In
HP C, the size of an enumeration type is always 16 bits. When HP C passes
enumeration types as value parameters, the values are extended to 32 bits; the
high order 16 bits are disregarded. Because Ada also performs the extension to
32 bits for enumeration type values, they will be in the correct form for HP C
subprograms.

HP C enumeration types are considered to be 16 bits. Therefore, Ada
enumeration types that use the 32-bit representation cannot be passed to HP C
as an enumeration type. For these 32*bit enumeration types, you will have to
pass them as integers.

If a representation specification applies to the Ada enumeration type, the value
specified by the representation clause (not the 'PUS value) will be passed to the
HP C routine.

When passed by reference, the original values are not extended. Therefore,
Ada's 8-bit enumeration objects have no direct representation in HP C
and cannot be used by an HP C subprogram. You may want to use a size
specification clause to force the size of the enumeration type to 16 bits.
Alternatively, an Ada 8-bit enumeration value passed by reference to HP C can
be accessed as a character in C using the type char *.

Enumeration types are allowed for the result returned by an external interfaced
subprogram written in HP C.

11-20 Calling External Subprograms Appendix F - Ada/300

F 11.3.1.3 Boolean Types and HP C Subprograms

The type Boolean is not defined in HP C and the Ada/300 representation of
Booleans does not correspond to any type in HP C. Ada Booleans can be
converted to integers and then passed to external interfaced subprograms
written in HP C.

In Ada, BOOLEAN'POS (TRUE) has a result of one and BOOLEAN'POS (FALSE) has
a result of zero. Thus, the Ada attribute 'POS can be used to convert an Ada
Boolean type to an integer type. The integer type can then be passed to an HP
C external subprogram.

Boolean types are represented internally as an S-bit enumeration type of the
predefined type (FALSE or TRUE). Although a predefined enumeration type,
Ada Boolean values are represented in eight bits in a manner that is different
from other enumeration types in the HP implementation of Ada . The internal
representation of FALSE corresponds to 2#0000-0000# and TRUE corresponds
to 2#1111-1111# (that is, all zeros or all ones in eight bits, respectively). Note
the value of BOOLEAN'POS(TRUE) and the value of BOOLEAN'POS(FALSE). To
ensure the portability of your code, Ada Booleans should be passed using the
result of the 'POS attribute.

Boolean types are allowed for the result returned by an external interfaced
subprogram written in HP C, when care is taken to observe the internal
representation.

Appendix F - Ada/300 Calling External Subprograms 11-21

F 11.3.1.4 Character Types and HP C Subprograms

See section F 11.1.1.4 for details

The Ada predefined type CHARACTER and any of its subtypes correspond with
the type char in HP C. Both the Ada and HP C types have the same internal
representation and size. However, in Ada the type CHARACTER is constrained to
be within the 128 character ASCII standard.

Character types are represented as 8-bit enumeration values in the HP
implementation of Ada. When passed by value to an HP C subprogram, all
character values are zero-extended to 32 bits and pushed onto the stack. This
method conforms to the HP C parameter passing convention for unsigned
characters that are passed by value.

When passed by reference, a 32-bit address pointer to the character object is
pushed on the stack. The character object is not sign-extended to 32 bits.
This method conforms to the HP C parameter passing convention for unsigned
characters that are passed by reference.

The Ada predefined type CHARACTER is compatible with the HP C char type
(except for the smaller range of the Ada type.) The type CHARACTER can
be passed by value or by reference using the HP C types char and char *
respectively.

Character types are allowed for the result returned by an external interfaced
subprogram written in HP C.

11-22 Calling External Subprograms Appendix F - Ada/300

F 11.3.1.5 Real Types and HP C Subprograms

This section discusses passing fixed point types and floating point types to
HP C.

Fixed Point Types

Ada fixed point types are not supported as parameters or as results of external
subprograms. Ada fixed point types cannot be returned as function results
from interfaced subprograms written in HP C.

Floating Point Types

See section F 11.1.1.5 for details.

The HP C calling convention for passing parameters of floating point types by
value requires that 32-bit single precision reals be converted to 64-bit double
precision reals before being passed on the stack. The HP C calling convention
for functions returning values of real types also requires that a 64-bit double
precision real be returned (in registers DO and D1) and converted to 32 bits
afterwards if the function was to return a 32-bit real value.

The Ada type FLOAT is a 32-bit real type and is passed on the stack in a 32-bit
container; it is not extended to a 64-hit real Thi A jn tv,, r, , ,T should not
be used as a parameter type when passing reals by value to external HP C
subprograms. The Ada type LONG.FLOAT is a 64-bit real type and is passed on
the stack in a 64-bit container. The Ada type LONG-FLOAT should be used as
a parameter type when passing reals by value to external HP C subprograms.
The same kind of restrictions make the Ada type FLOAT incompatible with
HP C when used as a function result type. The Ada type LONG.FLOAT must be
used whenever you want to interface with an HP C function that returns a
floating point type.

Appendix F - Ada/300 Calling External Subprograms 11-23

The above limitation on the Ada type FLOAT only applies to parameters that
are of the type FLOAT or derived from a type whose base type is FLOAT. A
composite type, such as an array or a record, can have components that are of
the type FLOAT. Also, the type FLOAT can be passed by reference to an external
HP C subprogram. The HP C calling convention does not require conversion in
these cases.

When passing floating point values by reference to an interfaced subprogram
written in HP C, the 32-bit address of the object is pushed on the stack.

F 11.3.2 Access Types and HP C Subprograms

Ada access types are pointers to Ada objects. In the implementation of
Ada/300 for the Series 300 Computer System, an address pointer value will
always point at the first byte of storage for the designated object and not at a
descriptor for the object. This may not be the case for other implementations
of the Ada language and should be considered when Ada source code
portability is an issue.

Ada access types of mode in are passed by value. An access type object has a
value that is the address of the designated object. Therefore, when an access
type is passed by value, a copy of this 32-bit address is pushed on the stack.

Ada access types of mode out or in out are passed by reference. When
an access type object is passed by reference, the address of the access type
object itself is pushed on the stack. This will effectively force references to
the designated object to be double indirect references. See figure F-i in
section F 11.1.2 for details.

Ada access types may be returned as function results from external interfaced
subprograms written in HP C.

An object designated by an Ada access type can be passed to an HP C
external subprogram subject to rules applicable to the type of the underlying
object.

11-24 Calling External Subprograms Appendix F - Ada/300

F 11.3.3 Array Types and HP C Subprograms

See section F 11.1.3 for details.

Note that constrained Ada arrays with SHORTSHORTINTEGER or with 8-bit
enumeration type components can be most conveniently associated with an HP
C type of the form char [or char *.

In Ada/300, the predefined type STRING is an unconstrained array type. It

is represented in memory as a sequence of consecutive characters without
any gaps in between the characters. In HP C, the string type is represented
as a sequence of characters that is terminated with an ASCII null character

(\000). You will need to append a null character to the end of an Ada string
if that string is to be sent to an external interfaced HP C subprogram. When

retrieving the value of an HP C string object for use as an Ada string, you will
need to dynamically allocate a copy of the HP C string. The HP C type char
* is not compatible with the unconstrained array type STRING that is used by

Ada.

The examples on the following pages illustrate the handling of strings in HP C I
and in Ada, 300. In the first example, an Ada string is passed to HP C. Note 5
the need to explicitly add a null character to the end of the string so that

string will be in the form that HP C expects for character strings.

HP C routine:

/* Receiving an Ada string that has an ASCII.NULL appended to it

in this C routine

void receive-ada-str (var.str)

char *var-str;
{

printf ("C: Received value was : %s \n", var-str);
}

Appendix F - Ada/300 Calling External Subprograms 11-25

Ada routine:

-- passing an Ada string to a C routine

procedure SENDADA.STR is

-- Declare an interfaced procedure that sends an
-- Ada-String to a C-subprogram

procedure RECEIVEADASTR (VAR.STR : STRING);
pragma INTERFACE (C, RECEIVEADASTR);

begin -- SEND.ADASTR

-- Test the passing of an Ada strifig to a C routine
RECEIVEADASTR ("Ada test string sent to C " & ASCII.NUL);

end SENDADASTR;

11-26 Calling External Subprograms Appendix F -Ada/300

In the second example, a C string is converted to an Ada string. Note that
Ada must compute the length of the C string and then it must dynamically
allocate a new copy of the C string.

HP C routine:

/* Sending a C string value back to an Ada program */

char *send-c-str()

char *localstring;

local-string = "a C string for Ada.";
return local-string;

}

Appendix F - Ada/300 Calling External Subprograms 11.27

Ada routine:

-- We import several useful functions from the package SYSTEM
-- the generic function FETCH
-- to read a character value given an address
-- the function "+"(address,integer)
-- to allow us to index consecutive addresses

-- (See section F 3.1, for the complete specification
-- of the package SYSTEM)

with SYSTEM;
with TEXTIO ;
procedure READCSTRING is

type CSTRING is access CHARACTER;
-- This is the C type char *

type A-STRING is access STRING;
-- The Ada type pointer to STRING

11-28 Calling External Subprograms Appendix F - Ada/300

-- Declare an interfaced procedure that returns a pointer
-- to a C string (actually a pointer to a character)
function SEND.CSTR return CSTRING;
pragma INTERFACE (C, SENDCSTR);

function FETCH-CHAR is
new SYSTEM.FETCH (ELEMENT-TYPE => CHARACTER);
-- Create a non-generic instantation of the function FETCH

function CSTRINGLENGTH (SRC : CSTRING) return NATURAL is
use SYSTEM; -- import the "+"(address,integer) operator
LEN NATURAL := 0;
START SYSTEM.ADDRESS;
CUR CHARACTER;

begin
START SRC.all'ADDRESS;
loop

CUR FETCH-CHAR (FROM => START + INTEGER (LEN));
exit when CUR = ASCII.NUL;
LEN := LEN + 1;

end loop;
return LEN;

end CSTRING.LENGTH;

Appendix F - Ada/300 Calling External Subprograms 11-29

function CONVERTTO0ADA (SRC : CSTRING) return A-STRING is
use SYSTEM; -- import the "+"(addressinteger) operator

A-STORAGE A-STRING;
LEN NATURAL;
CSTART SYSTEM.ADDRESS;
CCUR CHARACTER;

begin
LEN := CSTRINGLENGTH (SRC);
A-STORAGE new STRING (1 .. LEN);
CSTART SRC.all'ADDRESS;
for INX in 0 .. LEN - 1 loop

CCUR := FETCH-CHAR (FROM => CSTART + INTEGER (INX));
A.STORAGE.all (INX + 1) := CCUR;

end loop;
return A-STORAGE;

end CONVERT_TOADA;

begin -- Start of READCSTRING
declare

A-RESULT A-STRING;
C.RESULT CSTRING;

begin
-- Call the external C subprogram

CRESULT SEND.C.STR;

-- Convert to an access Ada STRING

A-RESULT CONVERTTOADA(CRESULT);

-- Print out the result.
TEXTIO.PUT.LINE(ARESULT.all);

end;
end READC.STRING;

11-30 Calling External Subprograms Appendix F- Ada/300

F 11.3.4 Record Types and HP C Subprograms

See section F 11.1.4 for details.

Ada records can be passed as parameters to external interfaced subprograms
written in HP C if care is taken regarding the record layout and access to
record discriminant values. See section F 4.8, "Record Types," for information
on record type layout.

Appendix F - Ada/300 Calling External Subprograms 11-31

F 11.4 Calling HP FORTRAN 77 Language Subprograms
When calling interfaced HP FORTRAN 77 subprograms, the following form is
used:

pragma INTERFACE(FORTRAN, Ada.subprogram.name)

This form is used to identify the need for HP FORTRAN 77 parameter passing
conventions.

To call the HP FORTRAN 77 subroutine

SUBROUTINE fsub (parm)
INTEGER*4 parm

END

you need this interfaced subprogram declaration in Ada:

procedure FSUB (PARM : in out INTEGER);
pragma INTERFACE (FORTRAN, FSUB);

The external name specified in the Ada interface declaration can be any Ada
identifier. If the Ada identifier differs from the FORTRAN 77 subprogram
name, pragma INTERFACENAME is required.

No special handling of leading underscores is required because this is handled
by the compiler to conform to standard calling conventions. The pragma
ensures that the underscore required in front of the HP FORTRAN 77
subroutine name is correctly inserted by the compiler.

Note that the parameter in the example above is of mode in out. In
HP FORTRAN 77, all user-declared parameters are always passed by reference;
therefore, mode in out or mode out must be used for scalar type parameters.
The HP FORTRAN 77 compiler might expect some implicit parameters that
are passed by value and not by reference. See section F 11.4.4, "String Types,"
for details.

Only scalar types (integer, floating point, and character types) are allowed for
the result returned by an external interfaced function subprogram written inI HP FORTRAN 77. Boolean and access type results are not supported.

The FORTRAN libraries lib177.a and libF77.a are required when linking
Ada programs that contain external interfaced subprograms written in

11-32 Calling External Subprograms Appendix F -Ada/300

FORTRAN on the HP 9000 Series 300 implementation of Ada. The binder

will specify that the linker search the HP FORTRAN 77 libraries if any
pragma INTERFACE to FORTRAN are in the closure at bind time. For more
information, see the FORTRAN/9000 Reference Manual.

For general information about passing types to interfaced subprograms, see
section F 11.1.

F 11.4.1 Scalar Types and HP FORTRAN 77 Subprograms

FORTRAN expects all user-declared parameters to be passed by reference.
Ada scalar type parameters will only be passed by reference if declared as
mode in out or out; therefore, no scalar type parameters to a FORTRAN
interface routine should be declared as mode in (except for certain implicit
parameters; see section F 11.4.4, "String Types," for details.) No error will be
reported by Ada, but you will most likely get unexpected results.

F 11.4.1.1 Integer Types and HP FORTRAN 77 Subprograms

Table 11-3 summarizes the correspondence between integer types in Ada/300
and HP FORTRAN 77.

Table 11-3.

Ada/300 versus HP FORTRAN 77 Integer Correspondence

Ada HP FORTRAN 77 Bit Length

SHORTSHORT_.INTEGER BYTE 8

SHORT-INTEGER INTEGER*2 16

INTEGER INTEGER*4 32

The compatible types are the same for procedures and functions. Compatible
Ada integer types are allowed for the result returned by an external interfaced
function subprogram written in HP FORTRAN 77.

Appendix F -Ada/300 Calling External Subprograms 11-33

Ada semantics do not allow parameters of mode in out to be passed to
function subprograms. Therefore, for Ada to call HP FORTRAN 77 external

interfaced function subprograms, each scalar parameter's address must be

passed. The use of the supplied package SYSTEM facilitates this passing of the

object's address. The parameters in an HP FORTRAN 77 external function
must be declared as in the example below:

with SYSTEM;
VAL1 : INTEGER; -- a scalar type

VAL2 FLOAT ; -- a scalar type
RESULT : INTEGER;
function FTNFUNC (PARM1, PARM2 : SYSTEM.ADDRESS) return INTEGER;

The external function must be called from within Ada as follows:

RESULT := FTNFUNC (VALV'ADDRESS, VAL2'ADDRESS);

Because this has the effect of obscuring the types of the actual parameters, it is

suggested that such declarations be encapsulated within an inlined Ada body
so that the parameter types are made visible. An example follows:

-- specification of function to encapsulate
function FTNFUNC (PARMI INTEGER;

PARM2 : FLOAT) return INTEGER;
pragma INLINE (FTNFUNC);

with SYSTEM;
-- body of function to encapsulate
function FTNFUNC (PARMI INTEGER;

PARM2 : FLOAT) return INTEGER is
function FORTFUNC (P1, P2 : SYSTEM.ADDRESS) return INTEGER;

pragma INTERFACE (FORTRAN, FORTFUNC);

begin -- function FTNFUNC
return FORTFUNC (PARMI'ADDRESS, PARM2'ADDRESS);

end FTNFUNC;

11.34 Calling External Subprograms Appendix F - Ada/300

In the previous example, the name of the interfaced external function
subprogram (written in HP FORTRAN 77) is FORTFUNC. This name is declared
in the following way:

INTEGER*4 FUNCTION fortfunc i, x)
INTEGER*4 i
REAL*4 x

END

F 11.4.1.2 Enumeration Types and HP FORTRAN 77 Subprograms

The HP FORTRAN 77 language does not support enumeration types. However,
objects that are elements of an Ada enumeration type can be passed to
an HP FORTRAN 77 integer type because the underlying representation
of an enumeration type is an integer. The appropriate FORTRAN type
(BYTE, INTEGER*2, or INTEGER*4) should be chosen to match the size of the
Ada enumeration type. If a representation specification applies to the Ada
enumeration type, the value specified by the representation clause (not the
'POS value) will be passed to the FORTRAN routine.

Appendix F - Ada/300 Calling External Subprograms 11-35

F 11.4.1.3 Boolean Types and HP FORTRAN 77 Subprograms

In Ada/300, the type BOOLEAN is represented in eight bits and cannot be
used as a logical or short logical (that is, LOGICAL*2) in HP FORTRAN 77.
However, an INTEGER may be passed instead of the Boolean value (which can
be mapped to a LOGICAL*2).

Although a predefined enumeration type, Ada Boolean values are represented
in eight bits in a manner different from other enumeration types in the HP
implementation of Ada. The internal representation of FALSE corresponds to
2#0000.0000# and TRUE corresponds to 2#1111.1111# (that is, all zeros or all
ones in eight bits, respectively). Note that the value of BOOLEAN 'POS(TRUE) is
one and the value of BOOLEAN'POS(FALSE) is zero.

The Ada attribute 'POS can be used to convert an Ada Boolean to an
integer type, which can tnen be passed to an lIP FORTRAN 77 external
subprogram. Note that in Ada, BOOLEAN'POS (TRUE) has a result of one,
and that BOOLEAN'POS(FALSE) has a result of zero. This result can then be
converted to an integer type of 16 bits and subsequently can be treated as a
LOGICAL*2 in HP FORTRAN 77 and passed as a parameter.

Likewise, function results of type LOGICAL from an HP FORTRAN 77 function
subprogram may be considered in Ada as having a SHORT-INTEGER type
representing the position (attribute 'P0S) of the equivalent Boolean value.

For example, an HP FORTRAN 77 subroutine of the form

SUBROUTINE logical-sub (logical-parm)
LOGICAL*2 logical.parm

RETURN

can be called after suitable declarations in Ada as follows:

11-36 Calling External Subprograms Appendix F - Ada/300

subtype FORTRAN-LOGICAL is SHORT-INTEGER; -- 16 bits
BVAR : BOOLEAN; -- will be input Boolean value

-- define a place holder for FORTRAN logical sized integer
BTEMP : FORTRAN-LOGICAL;

procedure BOOLPRC(BPARM : in out FORTRANLOGICAL);
pragma TNTERFACE (FORTRAN, BOOL_PROC);
pragma INTERFACE-NAME (BOOLPROC, "logical-sub");

The above subroutine is called from the Ada program as:

BTEMP := FORTRANLOGICAL(BOOLEAN'POS(BVAR)); -- get equivalent
BOOLPROC(BTEMP); -- call the FORTRAN subroutine "logical-sub"

Note that the expression

BOOLEAN 'POS (BVAR)

evaluates to . value of one if BVAR is TRUE or a value of zero if BVAR is FALSE,
while the -xpression of the form

BTEMP := FORTRANLOGICAL(...);

is an explicit type conversion to a 16-bit integer type.

Note that the call from the Ada program in the preceding example involved an
assignment rather than an embedded expression. In Ada, an actual parameter
passed as an in out parameter cannot be an expression; it must denote an
object. Ada does, however, allow an explicit type conversion to be performed
on the parameter before it is passed as a parameter if the two types are of the
same size.

Therefore, the following example is not legal Ada:

BOOLPROC(FORTRANLOGICAL(BOOLEAN'POS(BVAR))); -- not legal

But this example is legal Ada:

BOOL.PROC(FORTRANLOGICAL(SOME_16_BITINTEGER-_BJECT)); -- legal

Appendix F - Ada/300 Calling External Subprograms 11-37

F 11.4.1.4 Character Types and HP FORTRAN 77 Subprograms

See section F 11.1.1.4 for details.

There is no one-to-one mapping between an Ada character type and any
HP FORTRAN 77 character type. An Ada character type can be passed to
HP FORTRAN 77 or returned from HP FORTRAN 77 using one of several
methods.

HP FORTRAN 77 considers all single character parameters to be
single-element character arrays. The method that HP FORTRAN 77 uses to
pass character arrays is described in section F 11.4.4. The method requires
that an implicit value parameter be passed to indicate the size of the character
array. Because HP FORTRAN 77 uses this method for passing character types,
it might be more convenient to convert Ada character types into Ada strings
and follow the rules that govern passing Ada string types to HP FORTRAN 77.

An Ada/300 character that has the default 8-bit size can be passed to a
default mode HP FORTRAN 77 parameter of type CHARACTER*I. This can be
done if the interface declaration specifies the additional size parameters that
HP FORTRAN 77 implicitly expects and passes the constant value one (the
size of the character) when the HP FORTRAN 77 subprogram is called. See
section F 11.4.4 for an example of implicit size parameters for strings; to pass
an Ada character instead of a string, simply use the Ada character type in the
Ada interface declaration in place of the Ada string type and CHARACTER* 1 in
the HP FORTRAN 77 declaration in place of the CHARACTER *(*). Note that
the size parameter or parameters are not specified in the HP FORTRAN 77
subprogram declaration; they are implicit parameters that are expected by the
HP FORTRAN 77 subprogram for each character array (or character) type
parameter.

I An Ada/300 character type that has the default size cannot be returned from
an HP FORTRAN 77 function that has a result type of CHARACTER*1 (it can be
returned as a BYTE: see below for details).

I An Ada/300 character type that has the default 8-bit size can also be passed
to an HP FORTRAN 77 parameter of type BYTE without having to pass the
additional length parameter. The BYTE will have the value of 'POS of the Ada
character value.

11-38 Calling External Subprograms Appendix F - Ada/300

An Ada/300 character type that has the default size can also be returned from I
an HP FORTRAN 77 function that has a return type of BYTE. The BYTE to be
returned should be assigned the 'POS value of the desired Ada character.

An Ada/300 character type with a representation specification for a larger
size (16 or 32 bits) is not compatible with any HP FORTRAN 77 character
type. Such Ada characters can be passed to the appropriately sized FORTRAN
integer type (INTEGER*2 or INTEGER*4) and treated as integers that have the
value of 'Pos of the Ada character value.

F 11.4.1.5 Real Types and HP FORTRAN 77 Subprograms

This section discusses passing fixed and floating point types to subprograms
written in FORTRAN.

Fixed Point Types

Ada fixed point types are not supported as parameters or as results of external
interfaced subprograms written in HP FORTRAN 77. Ada fixed point types
cannot be returned as function results from external interfaced subprograms
written in HP FORTRAN 77.

Floating Point Types

Parameters of type FLOAT in Ada correspond to the default REAL (REAL*4)
format in HP FORTRAN 77. The Ada type LONG-FLOAT is equivalent to the
HP FORTRAN 77 type DOUBLE PRECISION (or REAL*8). HP FORTRAN 77
follows the standard IEEE floating point conventions for both 32-bit and 64-bit
floating point numbers. Both 32-bit real values and 64-bit real values can be
passed as parameters.

A REAL value from an HP FORTRAN 77 external function subprogram may be
returned as a function result of type FLOAT in an Ada program.

A DOUBLE PRECISION (or REAL*8) value from an HP FORTRAN 77 external
function subprogram may be returned as a function result of type LONG-FLOAT
in an Ada program.

Appendix F - Ada/300 Calling External Subprograms 11-39

I When passed as parameters to an interfaced subprogram written in
HP FORTRAN 77, the original real values are not altered and a 32-bit address
of the real object is pushed on the stack.

F 11.4.2 Access Tvoes and HP FORTRAN 77 Subprograms

Ada access types have no ineaning in HP FORTRAN 77 subprograms because
the types are address pointers to Ada objects. The implementation value of
an Ada parameter of type ACCESS may be passed to an HP FORTRAN 77
procedure. The parameter in HP FORTRAN 77 is seen as INTEGER*4.
The object pointed to by the access parameter has no significance in
HP FORTRAN 77; the access parameter value itself would be useful only for
comparison operations to other access values.

HP FORTRAN 77 can return an INTEGER*4 and the Ada program can declare
an access type as the returned value type (it will be a matching size because in
Ada/300, -.n access type is a 32-bit quantity.) However, care should be taken
that the returned value can actually be used by Ada in a meaningful manner.

11-40 Calling External Subprograms Appendix F - Ada/300

F 11.4.3 Array Types and HP FORTRAN 77 Subprograms

See section F 11.1.3 for details.

Arrays whose components have an HP FORTRAN 77 representation can be
passed as parameters between Ada and interfaced external HP FORTRAN 77
subprograms. For example, Ada arrays whose components are of types
INTEGER, SHORT-INTEGER, FLOAT, LONG-FLOAT, or CHARACTER may be passed as
parameters.

Array types cannot be returned as function results from external
HP FORTRAN 77 subprograms. However, an access type to the array type can
be returned as a function result.

Caution Arrays with multiple dimensions are implemented differently
in Ada and HP FORTRAN 77. To obtain the same layout of9components in memory as a given HP FORTRAN 77 array, the
Ada equivalent must be declared and used with the dimensionsin reverse order.

Appendix F - Ada/300 Calling External Subprograms 11-41

Consider the components of a 2-row by 3-column matrix, declared in

HP FORTRAN 77 as

INTEGER*4 a(2,3)

or

INTEGER*4 a(1:2,1:3)

This array would be stored by HP FORTRAN 77 in the following order:

a(1,1), a(2,1), a(1,2), a(2,2), a(1,3), a(2,3)

This is referred to as storing in column major order; that is, the first subscript
varies most rapidly, the second varies next most rapidly, and so forth, and the
last varies least rapidly.

Consider the components of a 2-row by 3-column matrix, declared in Ada as:

A : array (1..2, 1..3) of INTEGER;

This array would be stored by Ada in the following order:

A(1,1), A(1,2), A(1,3), A(2,1), A(2,2), A(2,3)

This is referred to as storing in row major order; that is, the last subscript
varies most rapidly, the next to last varies next most rapidly, and so forth,
while the first varies least rapidly. Clearly the two declarations in the different
languages are not equivalent. Now, consider the components of a 2-row by
3-column matrix, declared in Ada as:

A : array (1..3, 1..2) of INTEGER;

Note the reversed subscripts compared with the FORTRAN declaration. This
array would be stored by Ada in the following order:

A(1,1), A(1,2), A(2,1), A(2,2), A(3,1), A(3,2)

If the subscripts are reversed, the layout would be

A(1,1), A(2,1), A(1,2), A(2,2), A(1,3), A(2,3)

which is identical to the HP FORTRAN 77 layout. Thus, either of the
language declarations could declare its component indices in reverse order to be
compatible.

11-42 Calling External Subprograms Appendix F - Ada/300

To illustrate that equivalent multi-dimensional arrays require a reversed order
of dimensions in the declarations in HP FORTRAN 77 and Ada, consider the
following:

The Ada statement

FOO : array (1..10,1..5,1..3) of FLOAT;

is equivalent to the HP FORTRAN 77 declaration

REAL*4 FOO(3,5,10)

or

REAL*4 FOO(1:3,1:5,1:10)

Both Ada and HP FORTRAN 77 store a one-dimensional array as a linear list.

Appendix F - Ada/300 Calling External Subprograms 11-43

F 11.4.4 String Types and HP FORTRAN 77 Subprograms

When a string item is passed as an argument to an HP FORTRAN 77
subroutine from within HP FORTRAN 77, extra information is transmitted
in hidden (implicit) parameters. The calling sequence includes a hidden
parameter (for each string) that is the actual length of the ASCII character
sequence. This implicit parameter is passed in addition to the address of the
ASCII character string. The hidden parameter is passed by value, not by
reference.

These conventions ze different from those of Ada. For an Ada program to call
an external interfaced subprogram written in HP FORTRAN 77 with a string
type parameter, you must explicitly pass the length of the string object. The
length must be declared as an Ada 32-bit integer parameter of mode in.

11-44 Calling External Subprograms Appendix F - Ada/300

The following example illustrates the declarations needed to call an external
subroutine having a parameter profile of two strings and one floating point
variable.

procedure FTNSTR is
SA: STRING(1..6):= "ABCDEF";
SB: STRING(1..2):= "GH";
FLOAT-VAL: FLOAT:= 1.5;
LENGTHSA, LENGTHSB INTEGER;

procedure FEXSTR (S1 : STRING; -- passed by reference
F in out FLOAT; -- must be IN OUT
S2 STRING; -- passed by reference
LS1 : INTEGER ; -- len of string Si,

-- must be IN
LS2 in INTEGER); -- len of string S2,

-- must be IN

pragma INTERFACE (FORTRAN, FEXSTR);

begin -- procedure FTNSTR
LENGTH.SA SA'LENGTH;
LENGTH.SB SB'LENGTH;

FEXSTR(SA, FLOATVAL, SB, LENGTHSA, LENGTHSB);
end FTNSTR;

Note Note that the order of the string lengths is in the same order of
their appearance in the corresponding parameter and that they
appear after all other parameters (at the end of the parameter
list).

Appendix F - Ada/300 Calling External Subprograms 11-45

The HP FORTRAN 77 external subprogram is the following:

SUBROUTINE Fextr (sl, r, s2)
CHARACTER *(*) sl, s2
REAL*4 r

END

It is not possible to declare, in Ada, an external FORTRAN function
that returns a result of type STRING (character*N or character*(*) in
FORTRAN). However, such a FORTRAN function can be accessed from Ada
by declaring the function to be an Ada procedure with two additional initial
parameters. The first parameter should be declared as an out parameter of
a constrained string type; the second parameter should be declared as an in
pramete, of type INTEGER. The string that is to hold the result is passed as
the first parameter, and the length of that first parameter (the number of
characters that FORTRAN can safely return in that first parameter string) is
passed as the second parameter.

If the maximum number of characters specified by the second parameter is
greater than the number of characters in the string being returned as the
FORTRAN function result, the Ada string will be padded with blanks out to
the number of characters specified as the second parameter. If the maximum
number of characters specified by the second parameter is less than the
number of characters in the string being returned as the FORTRAN function
result, only the number of characters specified as the second parameter will be
returned in the Ada string.

11-46 Calling External Subprograms Appendix F - Ada/300

The following Ada program calls a FORTRAN function that returns a STRING
function result:

procedure FORTRANSTRINGFUNC is

subtype RESULT is STRING (1..80)

procedure FORTRANFOO (RES: out RESULT;
MAX: in INTEGER;
X : in out INTEGER;
Y : in out INTEGER);

pragma INTERFACE (FORTRAN, FORTRAN FOO);
pragma INTERFACE-NAME (FORTRANFOO, "foo");

S : RESULT;
A INTEGER;
B : INTEGER;

begin --FORTRANSTRINGFUNC

A : 28;
B := 496;
FORTRANFOO (S, S'LENGTH, A, B);

end FORTRAN-STRINGFUNC;

The FORTRAN function looks like this:

CHARACTER *(*) FUNCTION foo (x,y)
INTEGER*4 x,y

foo = 'RETURN THIS STRING TO ADA'
RETURN
END

Appendix F - Ada/300 Calling External Subprograms 11-47

F 11.4.5 Record Types and HP FORTRAN 77 Subprograms

See section F 11.1.4 for details.

Ada records may be passed as parameters to external interfaced subprograms
written in HP FORTRAN if care is taken regarding the record layout and
access to record discriminant values. See section F 4.8, "Record Types," for
information on record type layout.

Record types are not allowed as function results in HP FORTRAN functions.

F 11.4.6 Other FORTRAN Types

The HP FORTRAN 77 types COMPLEX, COMPLEX*8, DOUBLE COMPLEX, and
COMPLEX*16 have no direct counterparts in Ada. However, it is possible to
declare equivalent types using either an Ada array or an Ada record type. For
example, with type COMPLEX in HP FORTRAN 77, a simple Ada equivalent is a
user-defined record:

type COMPLEX is
record

Real FLOAT;
Imag FLOAT;

end record;

Similarly, an HP FORTRAN 77 double complex number could be represented
with the two record components declared as Ada type LONG-FLOAT.

While it is not possible to declare an Ada external function that returns the
above record type, an Ada procedure can be declared with an out parameter
of type COMPLEX. The Ada procedure would then need to interface with an
HP FORTRAN 77 subroutine, which would pass the result back using an in
out or out parameter.

11-48 Calling External Subprograms Appendix F - Ada/300

F 11.5 Calling HP Pascal Language Subprograms
When calling interfaced HP Pascal subprograms, the form

pragma INTERFACE (Pascal, Ada.subprogram.name)

is used to identify the need to use the HP Pascal parameter passing
conventions.

To call the following HP Pascal subroutine

module modp;
export

procedure p-subr (val.parm integer;
var ref.parm integer);

implement
procedure p-subr (valparm integer;

var ref.parm integer);
begin-

end;

end.

Ada would use the interfaced subprogram declaration:

procedure P.SUB (VALPARAM : in INTEGER;
REFPARAM : in out INTEGER);

pragma INTERFACE (Pascal, PSUB);

In the above example we provided the Ada subprogram identifier PSUB to the
pragma INTERFACE.

The name of the Pascal external subprogram viewed externally from Ada is the
single identifier modp.p.subr, which is formed by the module name modp and
the procedure name p-subr. A pragma INTERFACE-NAME will often be used for
HP Pascal because the naming convention in HP Pascal always appends the
module name to the procedure name when generating external names for the
ld(2) command.

Note that the parameter in the example, VALPARAM, must be of mode in
to match the parameter definition for val.parm found in the HP Pascal
subroutine. Likewise, REFPARAM, must be of mode in out to correctly match

Appendix F - Ada/300 Calling External Subprograms 11-49

the HP Pascal definition of var ref.parm. Also, note that the names for
parameters do not need to match exactly. However, the mode of access and the
data type must be correctly matched, but there is no compile-time or run-time
check that can ensure that they match. It is your responsibility to ensure their
correctness.

The HP Pascal Language Reference Manual states that calling external
interfaced Pascal language subprograms from Ada programs should use the
two assembly language routines asm.initproc and asm.wrapup. However,
these routines interfere with the Ada runtime and cannot be used by an Ada
program. The routine asm.initproc performs three functions: it associates
the file descriptors stdin and stdout with the standard Pascal files INPUT
and OUTPUT, it initializes the Pascal heap manager, and it sets a Pascal error
handler for all HP-UX signals. The Ada runtime requires many of these
sirnals to be mapped to the Ada runtime. Your Ada program will not handle
exceptions correctly after a call to asmoinitproc.

Because asminitproc is not called by an Ada program before executing
HP Pascal subprograms, the following limitations are imposed upon the HP
Pascal subprograms. First, no access to the standard Pascal files INPUT and
OUTPUT is allowed. Second, the subprogram cannot dynamically allocate
any objects in HP Pascal using the new call. These restrictions apply to all
HP Pascal functions and procedures that are reachable from the interfaced
subprogram.

For more information on Pascal interfacing, see the HP Pascal Language
Reference Manual and the section, "HP-UX Implementation, Pascal and other
Languages". Additional information is available in the HP- UX Portability
Guide.

For Pascal, scalar and access parameters of mode in are passed by value: the
value of the parameter object is copied and pushed on the stack. All other
types of in parameters (arrays and records) and parameters of mode out
and in out are passed by reference: The address of the object is pushed on
the stack. This means that, in general, Ada in parameters correspond to
Pascal value parameters while Pascal var parameters correspond to the Ada
parameters of either mode in out or mode out.

For Pascal external interfaced subprograms called from an Ada program, all
parameters are passed in containers of size 32 bits, except for Ada LONG-FLOAT
parameters which are passed in 64 bits.

11-50 Calling External Subprograms Appendix F - Ada/300

Only scalar types (integer, floating point, character, Boolean, and enumeration
types) and access types are allowed for the result returned by an external
interfaced Pascal function subprograms.

For general information about passing parameters to interfaced subprograms,
see section F 11.1.

F 11.5.1 Scalar Types and HP Pascal Subprograms

See section F 11.1.1 for details.

F 11.5.1.1 Integer Types and HP Pascal Subprograms

Integer types are compatible between Ada and HP Pascal provided their ranges
of values are identical. Table 11-4 shows corresponding integer types in Ada
and HP Pascal.

Table 11-4. Ada/300 versus HP Pascal Integer Correspondence

Ada HP Pascal Bit Length

predefined type INTEGER predefined type integer 32

predefined type 16
SHORT-.INTEGER
user-defined types type
116=-32768... 32767;

predefined type user-defined type 8
SHORT.SHORTINTEGER type 18 = -128 ... 127;

Appendix F - Ada/300 Calling External Subprograms 11-51

When passed by value to an HP Pascal language subprogram, all integer
values are extended to 32 bits to conform to the HP Pascal parameter passing
conventions. Ada INTEGER (32 bits) types passed by value are pushed onto the
stack without alteration. Values of type SHORTSHORT-.INTEGER (8 bits) and
type SHORT-INTEGER (16 bits) are sign extended to 32 bits and pushed on the
stack. The automatic sign extension helps in passing different sized values that
are within an acceptable range.

When passed by reference, the integer values are not changed; the original
values are not sign extended to 32 bits. A 32-bit address pointer to the integer
object is pushed on the stack.

In HP Pascal, user-defined INTEGER types can occupy either 32 bits or 16 bits.
When integer types are passed by reference, the two integer types must be
exactly the same size. In table 11-4 above, the HP Pascal user-defined integer
type 116 can be used when values of the Ada type SHORT-INTEGER are passed
by reference.

When passing integers by reference, note that the predefined Ada type
SHORTSHORTINTEGER (stored in eight bits) has no equivalent integer
representations in HP Pascal. This means that parameters of the type
SHORT-_SHORT_ INTEGER cannot be passed by reference to HP Pascal.

All Ada integer types are allowed for the result returned by an external
interfaced subprogram written in HP Pascal if care is taken with respect to
ranges defined for integer quantities.

11-52 Calling External Subprograms Appendix F - Ada/300

F 11.5.1.2 Enumeration Types and HP Pascal Subprograms

Ada and HP Pascal have slightly different implementations of enumeration
types. In Ada, enumeration types can have a size of 8, 16, or 32 bits. In
HP Pascal, all enumeration types are 16-bit quantities. The parameter passing
conventions for enumeration types in both languages is to pass enumeration
values in 32-bit stack containers. This allows the two implementations to treat
enumeration types as equivalent. However, an Ada enumeration type that
contains a representation clause that includes 32-bit values cannot be used as
an HP Pascal enumeration value.

When passed by reference, the original value is not altered by sign extension
and a 32-bit address pointer to the enumeration object is pushed on the stack.

Ada supports the return of a function result that is an enumeration type from
an external interfaced function subprogram written in HP Pascal.

F 11.5.1.3 Boolean Types and HP Pascal Subprograms

See section F 11.1.1.3 for details.

F 11.5.1.4 Character Types and HP Pascal Subprograms

See section F 11.1.1.4 for details.

Values of the Ada predefined character type might be treated as the type CHAR

in HP Pascal external interfaced subprograms.

Appendix F - Ada/300 Calling External Subprograms 11-53

F 11.5.1.5 Real Types and HP Pascal Subprograms

The following subsections discuss passing Ada real types to interfaced
HP Pascal subprograms.

Fixed Point Types

Ada fixed point types are not supported as parameters or as results of external
subprograms. Ada fixed point types cannot be returned as function results
from interfaced subprograms written in HP Pascal.

Floating Point Types

HP Pascal uses the standard IEEE floating point conventions for both 32- and
64-bit floating point numbers. Ada FLOAT values correspond to HP Pascal real
values. Ada LONG-FLOAT values correspond to HP Pascal longreal values.

When passed by value to interfaced subprograms written in HP Pascal, values
of type FLOAT and LONG-FLOAT are copied and pushed on the stack. Both 32-
and 64-bit real types can be returned as results from an external interfaced
function subprogram written in HP Pascal.

When passed by reference to an interfaced subprogram written in HP Pascal,
the original values are not altered and a 32-bit address of the object is pushed
on the stack.

11-54 Calling External Subprograms Appendix F - Ada/300

F 11.5.2 Access Types and HP Pascal Subprograms

Ada access values can be treated as pointer values in HP Pascal. The Ada
heap allocation and the HP Pascal heap allocation are completely separate.
There must be no explicit deallocation of an access or pointer object in one
language of an object allocated in the other language.

An object designated by an Ada access type can be passed to an HP Pascal
external subprogram, subject to rules applicable to the type of the underlying
object.

Ada access types of mode in are passed by value. When an access type is
passed by value, a copy of the 32-bit object address is pushed on the stack. If
the type is passed by reference, however, a 32-bit address pointer to the object
address location is pushed on the stack. This is effectively a double indirect
address to the underlying object. (See figure 11-1 in section F 11.1.2.)

Ada access types may be returned as function results from external interfaced
subprograms written in HP Pascal.

F 11.5.3 Array Types and HP Pascal Subprograms

See section F 11.1.3 for details.

Arrays with components with the same representation have the same
representation in Ada and HP Pascal.

Arrays cannot be passed by value from Ada to HP Pascal. An Ada array can
only be passed to a VAR parameter in an HP Pascal subprogram.

Pascal conformant array parameters passed by reference (VAR) can be passed
from Ada to Pascal. To pass such parameters, additional implicit parameters
expected by Pascal must be added in the Ada declaration of the Pascal
procedure or function. These parameters are the bounds of the array and
the size of the array elements in bytes; the parameters must be declared in
the above order and they must immediately preceed the conformant array
parameter or parameters. The bounds and element size parameters must
declared as in parameters of an integer or enumeration type.

Appendix F - Ada/300 Calling External Subprograms 11-55

When more than one conformant array parameter is declared in a
comma-separated formal parameter list in a Pascal procedure or function
heading, all the actual parameters passed to the formals in that list must have
the same number of dimensions and the same lower and upper index bound in
each dimension. Therefore, only one set of implicit bound and element size
parameters is needed for the two formal parameters A and B in the following
example. The actual parameters passed to the formal A and B parameters must
have the same index bounds.

Note that two sets of implicit bound and element size parameters are needed
for the two-dimensional conformant array formal parameter C (one set for
each dimension). If there were additional two-dimensional conformant
array parameters, and they were all declared in the same comma-separated
parameter list in Pascal (with the C parameter), only the two sets of implicit
bound and element size parameters would be required for the entire list. For
example, if the Pascal function heading is

FUNCTION Vectori (VAR a,b: ARRAY [i..j: INTEGER] of INTEGER;
VAR c: ARRAY [p..q] of ARRAY r..s] of INTEGER)

INTEGER;

11-56 Calling External Subprograms Appendix F - Ada/300

The Ada declaration to call such a Pascal function would be as follows:

with SYSTEM;
procedure PASCALCONFORM.FUNC is

type VECTOR is array (INTEGER range -492..+500)
of INTEGER range -100..+100;

type VECTOR2 is array (INTEGER range 1..10) of VECTOR;

function VECTORTHING (I, J: INTEGER; ELSIZE1: INTEGER;
A, B: VECTOR;

P, Q: INTEGER; ELSIZE2: INTEGER;
R, S: INTEGER; ELSIZE3: INTEGER;

C: VECTOR2) return INTEGER;

pragma INTERFACE (PASCAL, VECTORTHING);

INTEGER-SIZE constant INTEGER
:= INTEGER'SIZE / SYSTEM.STORAGEUNIT;

VECTOR-SIZE constant INTEGER
:= VECTOR'SIZE / SYSTEM.STORAGEUNIT;

W, V: VECTOR;
X : VECTOR2;
I INTEGER;

begin -- PASCALCONFORMFUNC
I : VECTORTHING (VECTOR'FIRST, VECTOR'LAST, INTEGER_SIZE, W, V,

VECTOR2'FIRST, VECTOR2'LAST, VECTOR-SIZE,
VECTOR'FIRST, VECTOR'LAST, INTEGER-SIZE, X);

end PASCALCONFORMFUNC;

Array types cannot be returned as function results from external interfaced
subprograms written in HP Pascal.

Appendix F - Ada/300 Calling External Subprograms 11-57

F 11.5.4 String Types and HP Pascal Subprograms

Passing variable length strings between Ada and HP Pascal is supported with
some restrictions. The parameters must be passed by reference only. HP Pascal
programs must declare var parameters and the Ada program must declare the
parameters to be of mode in out or out to ensure passing by reference.

Although there is a difference in the implementation of the type STRING in the
two languages, with suitable declarations you can create compatible types to
allow the passing of both Ada strings and HP Pascal strings. An Ada string
corresponds to a packed array of characters in Pascal. The following example
illustrates the declaration of compatible types for passing an Ada string
between an Ada program and an HP Pascal subprogram.

HP Pascal subprogram:

(* passing an Ada STRING type to an HP Pascal routine *)
module p;
export

type string80 * packed array [1..80J of char;
procedure exi C var s :stringSO; len t integer);

implement
procedure exl;
begin

... (* update/use the Ada string as a PAC *)
end;

end.

11-58 Calling External Subprograms Appendix F - Ada/300

Ada program:

-- Ada calling HP Pascal procedure with Ada STRING
procedure API is

-- Define Ada string corresponding to
-- HP Pascal packed array of char
subtype STRING8O is STRING (1..80);

-- Ada definition of HP Pascal procedure to be called,
-- with an Ada STRING parameter, passed by reference.
procedure EX1 (S in out STRING80;

LEN INTEGER);
pragma INTERFACE (PASCAL, EXI);
pragma INTERFACE-NAME (EX1, "p-exl");

S :STRING8O;

begin -- API
S(1..26) := "Ada to HP Pascal Interface";
EXI (S, 26); -- Call the HP Pascal subprogram

end AP_ 1;

Appendix F - Ada/300 Calling External Subprograms 11-59

An HP Pascal STRING type corresponds to a record in Ada that contains
two fields: an 8-bit integer field containing the string length and an Ada
STRING field containing the string value. The following example illustrates the
declaration of compatible types for passing an HP Pascal string between an
Ada program and a Pascal subprogram.

Pascal subprogram:

(* passing an HP Pascal STRING type from Ada to *)
an HP Pascal routine

module p;
export

type string8O = string[80);

procedure ex2 (var s :string8O);
implement

procedure ex2;
var

str : string80
begin

... --update/use the HP Pascal string
end;

end.

11-60 Calling External Subprograms Appendix F - Ada/300

Ada program:

-- Ada calling HP Pascal procedure using a HP Pascal string[80)
procedure AP_2 is

type PASCAL-LENGTH is range 0 .. (2**8)-1;

-- The size specification clause forces the type
-- PASCAL-LENGTH to be an 8-bit unsigned integer.

for PASCALLENGTH'SIZE use 8;
-- Define an Ada record that will correspond exactly
-- with the HP Pascal type: stringE[80

type PASCAL-STRING80 is
record

LEN : PASCAL-LENGTH
S : STRING (1..80);

end record;

-- Here we use a record representation clause to
-- force the compiler to layout the record in

-- the correct manner for HP Pascal

for PASCAL-STRING8O use
record

LEN at 0 range 0 .. 7;
S at 1 range 0 .. 80*8;

end record;

-- The Ada definition of the HP Pascal procedure to be
-- called, with an HP Pascal STRING parameter, passed
-- by reference.

procedure EX2 (S : in out PASCALSTRING8O);
pragma INTERFACE (PASCAL, EX2);

PS : PASCALSTRING80;

Appendix F - Ada/300 Calling External Subprograms 11-61

begin -- AP_2

-- assign value field

PS.S(1..26) := "Ada to HP Pascal Interface";
PS.LEN :- 26; -- set string length field
EX2 (PS); -- call the HP Pascal subprogram

end AP_2;

F 11.5.5 Record Types and HP Pascal Subprograms
See section F 11.1.4 for details.

Records cannot be passed by value from Ada to HP Pascal. An Ada record can
only be passed to a VAR parameter in an HP Pascal subprogram.

Record types cannot be returned as function results from external HP Pascal
subprograms.

11-62 Calling External Subprograms Appendix F - Ada/300

F 11.6 Summary
Table 11-6 shows how various Ada types are passed to subprograms.

Table 11-6.

Modes for Passing Parameters to Interfaced Subprograms

Ada Type Mode Passed By

ACCESS, in value
SCALAR

-INTEGER
-ENUMERATION
-BOOLEAN
-CHARACTER
-REAL

ARRAY, in reference
RECORD

all types except TASK in out reference
and FIXED POINT

all types except TASK out reference
and FIXED POINT

TASK N/A not passed
FIXED POINT

Appendix F - Ada/300 Calling External Subprograms 11-63

Table 11-7 summarizes general information presented in section F 11.1.

Table 11-7.
Types Returned as External Function Subprogram Results

Ada Type Assembly HP C HP FORTRAN HP Pascal
Language

INTEGER allowed allowed allowed allowed

ENUMERATION allowed allowed not allowed (1) allowed

CHARACTER allowed allowed not allowed allowed

BOOLEAN allowed allowed not allowed (1) not allowed

FLOAT allowed allowed (2) allowed allowed

FIXED POINT not allowed not allowed not allowed not allowed

ACCESS allowed allowed not allowed (1) allowed

ARRAY not allowed not allowed not allowed not allowed

STRING not allowed not allowed not allowed not allowed

RECORD not allowed not allowed not allowed not allowed

TASK not allowed not allowed not allowed not allowed

Notes for table 11-7:

(1) Pass as an integer equivalent.

(2) Some restrictions apply to Ada FLOAT types (in passing to HP C
subprograms).

11-64 Calling External Subprograms Appendix F - Ada/300

Table 11-8 summarizes information presented in sections F 11.2 through F 11.5.

Table 11-8. Parameter Passing in the Series 300 Implementation

Ada Type Assembly HP C HP FORTRAN HP Pascal
Language

INTEGER allowed allowed allowed allowed

ENUMERATION allowed allowed not allowed (1) allowed

CHARACTER allowed allowed not allowed (2) allowed

BOOLEAN allowed allowed not allowed (1) allowed (3)

FLOAT allowed allowed allowed allowed

FIXED POINT not allowed not allowed not allowed not allowed

ACCESS allowed allowed not allowed allowed

ARRAY (4) not allowed allowed allowed (5) allowed

STRING not allowed allowed (6) allowed (7) not allowed (8)

RECORD not allowed allowed not allowed allowed

TASK not allowed not allowed not allowed not allowed

Notes for table 11-8:

(1) Can be passed as an equivalent integer value.

(2) Must be passed as a STRING.

(3) Passed by value only.

(4) Using only arrays of compatible component types.

(5) See warning on layout of elements in section for each language.

(6) Special handling of null terminator character is required.

(7) Requires that the length also be passed.

(8) Ada strings can be passed to a Pascal PAC (Packed Array of Characters.)

Appendix F - Ada/300 Calling External Subprograms 11-65

F 11.7 Potential Problems Using Interfaced Subprograms
I The Ada runtime on the HP 9000 Series 300 computer uses signals in a manner

that generally does not interfere with interfaced subprograms. However,
some HP-UX routines are interruptible by signals. These routines, if called
from within interfaced external subprograms, may create problems. You need
to be aware of these potential problems when writing external interfaced
subprograms in other languages that will be called from within an Ada main
subprogram. See sigvector(2) in the HP-UX Reference for a complete
explanation of interruptibillty of operating system routines.

The following should be taken into consideration:

" SIGALRM is sent when a delay statement reaches the end of the specified
interval.

" One of SIGALRM, SIGVTALRM (the default), or SIGPROF is sent periodically
when time-slicing is enabled in a tasking program.

" Interruptible HP-UX routines (see sigvector(2)) may need to be
protected from interruption by the signals used by the Ada runtime
system. The SYSTEM_-ENVIRONMENT routines SUSPEND_-.ADA-TASKING and
RESUME-_ADA-TASKING can be used to implement this protection. As
an alternative, the knowledgeable user can use the sigsetmask(2) or
sigblock(2) mechanism to implement the same protection.

" If a signal is received while it is blocked, one instance of the signal is
guaranteed to remain pending and will be honored when the signal is
unblocked. Any additional instances of the signal will be lost.

" Any signals blocked in interfaced code should be unblocked before leaving the
interfaced code.

The alarm signals sent by delay statements and sent to implement time-slicing
(noted above) are the most likely signals to cause problems with interfaced
subprograms. These signals are asynchronous; that is, they can occur at any
time and are not caused by the code that is executing at the time they occur.
In addition. SIGALRM and SIGPROF (but not SIGVTALRM) can interrupt HP-UX
routines that are sensitive to being interrupted by signals.

11-66 Calling External Subprograms Appendix F - Ada/300

Problems can arise if an interfaced subprogram initiates a "slow" operating
system function that can be interrupted by a signal (for example, a read(2)
call on a terminal device or a wait(2) call that waits for a child process to
complete). Problems can also arise if an interfaced subprogram can be called
by more than one task and is not reentrant. If an Ada reserved signal occurs
during such an operation or non-reentrant region, the program may function
erroneously.

For example, an Ada program that uses delay statements and tasking
constructs causes the generation of SIGALRM and optionally either SIGVTALRM
or SIGOROF. If an intefaced subprogram needs to perform a potentially
interruptible system call or if the interfaced subprogram can be called from
more than one task and is not reentrant, you can protect the interfaced
subprogram by blocking the potentially interrupting time signals around the
system call or non-reentrant region. If one of these timer signals does occur
while blocked, signifying either the end of a delay period or the need to
reschedule dur to time-slice expiration, that signal is not lost; it is effectively
deferred until it is later unblocked.

Appendix F - Ada/300 Calling External Subprograms 11-67

I Assuming a tasking program, which contains one or more delay statements,
with time-slicing enabled using the default time-slicing signal (SIGVTALRM), the
following example shows a protected read(2) call in the C language:

#inc de <signal.h>
void nterface-rout(;
{

1 g mask;

/ Add SIGALRM and SIGVTALRM to the list of currently
blocked signals (see sigblock(2)).

ma = sigblock (sigmask (SIGALEM) I sigmask (SIGVTALRM));

read (...); /* or non-reentrant region */

si etmask (mask); /* restore old mask sn Ada runtime can function */

. A

11-68 Calling External Subprograms Appendix F. Ada/300

If any Ada reserved signal other than SIGALRM or the alarm signal (if any)

being used for time-slicing is to be similarly blocked, SIGALRM and the alarm
signal used for time-slicing must already be blocked or must be blocked at the
same time as the other signal or signals.

Any Ada reserved signal blocked in interfaced code should be unblocked before
leaving that code, or as soon as possible thereafter, to avoid unnecessarily
stalling the Ada runtime executive. Failure to follow these guidelines will cause
improper delay or tasking operation.

An alternative and preferred method of protecting interfaced code from signals I
is described in tLe Ada 300 User's Guide in the section on "Execution-Time
Topics." The two procedures SUSPENDADATASKING and RESUME-ADA_-TASKING
from the package SYSTEIENVIRONMENT supplied by Hewlett-Packard can be
used within an Ada program to surround a critical section of Ada code or a call
to external interfaced subprogram code with a critical section.

Appendix F - Ada/300 Calling External Subprograms 11-69

F 11.8 Input-Output From Interfaced Subprograms
Using I/O from interfaced subprograms written in other languages requires
caution. Some areas in which problems can arise are discussed in this section.

F 11.8.1 Files Opened by Ada and Interfaced Subprograms

An interfaced subprogram should not attempt to perform I/O operations
on files opened by Ada. Your program should not use HP-UX I/O utilities
intermixed with Ada I/O routines on the same file. If it is necessary to perform
I/O operations in interfaced subprograms using the HP-UX utilities, open and
close those files with HP-UX utilities.

F 11.8.2 Preconnected I/O and Interfaced Subprograms

The standard HP-UX files stdin and stdout are preconnected by Ada I/O. If
non-blocking interactive I/O is used, additional file descriptors will be used for
interactive devices connected to stdin or stdout. Ada does not preconnect
stderr, which is used for run-time error messages. An Ada subprogram called
PUT-TO.-STANDARDERROR is provided in the package SYSTEM.ENVIRONMENT
which allows your program to output a line to the HP-UX stream stderr. For
more details on Ada I/O. see the Ada RM, section 14 and the section on using

I the Ada Development System in the Ada 300 User's Guide.

11-70 Calling External Subprograms Appendix F - Ada/300

F 11.8.3 Interactive I/0 and Interfaced Subprograms

The default I/O system behavior is NON-BLOCKING for Ada programs with
tasking and BLOCKING for sequential (non-tasking) Ada programs. HP's
implementation of Ada/300 will set non-blocking I/O by default for interactive I
files and pipes if the program contains tasks. If the Ada program contains no
task structures (that is, it is a sequential program), blocking I/O is set for
interactive files and pipes. You can override the defaults with binder options.

The binder option -W b,-b sets up blocking I/O and the binder option -W b, -B
sets up non-blocking I/O. In non-blocking I/O, a task (or Ada main program)
will not block when attempting interactive input if data is not available. If the
I/O request cannot be immediately satisfied, the Ada runtime will place the
task that requested I/O on a suspend queue and will awaken the task when the
I/O operation is complete. This arrangement allows other tasks to continue
execution; the task requesting I/O will be suspended until the I/O operation is
completed by the Ada runtime.

Appendix F - Ada/300 Calling External Subprograms 11-71

12
F 12. Interrupt Entries

This chapter describes interrupt processing.

F 12.1 Introduction
The Ada compiler supports a limited form of interrupt entries as defined by the I
Ada RM, section 13.5.1. In addition, the compiler provides a generalization of
the language-defined mechanism that includes the following features:

" Interrupt entries are associated with HP-UX signals, but are not directly
invoked by an HP-UX signal. Instead, the interrupt entry is called from
an Ada signal handling procedure. An Ada signal handling procedure can
be associated with one or more HP-UX signals. If an Ada signal handler
wants to call an interrupt entry, it can only call the interrupt entry that is
associated with the same HP-UX signal that caused the Ada signal handler
itself to be invoked.

" Interrupt entries associated with HP-UX signals can have parameters.

" If the interrupt entry call cannot be processed immediately by the server
task, the interrupt entry parameters are buffered so that the interrupt is not
lost and the entry is processed as soon as conditions permit.

" All signals except the ones reserved by the Ada runtime and the HP-UX
system can be handled with up to seven different priorities. The interrupt
entry mechanism will not prohibit the use of signals reserved by the Ada
runtime or by HP-UX, but using such signals for interrupt entries will cause
unpredictable program behavior.

Appendix F . Ada/300 Interrupt Entries 12-1

F 12.2 Immediate Processing
If an Ada handler has been associated with an HP-UX signal, when that
signal occurs, an internal signal handler installed by the runtime system
is entered. That internal handler then calls the user-defined Ada handler.
One parameter of type SYSTEM. ADDRESS is passed to the user handler; the
parameter is the "signal number" that caused it to be invoked (a function is
provided to convert the integer representation of a "signal number" into an
object of type SYSTEM.ADDRESS). The Ada handler can make an entry call to
a task entry associated with the particular. signal and/or it can update global
state information (for example, variables) that is meaningful to the program.
It should then return, giving control to the internal handler in the runtime
system.

If the Ada handler makes an entry call to an entry previously declared with
a representation clause as an interrupt entry, the rendezvous does not occur
immediately. The kernel saves the parameters passed by the signal handler in a
buffer taken from a pool of free buffers and links the buffer to the entry queue
for the interrupt. The actual rendezvous will take place in deferred processing
(see below). The pool of free buffers is allocated once at the program startup
by calling INIT_INTERRUPT_-MANAGER with the number of buffers specified (see
below).

12-2 Interrupt Entries Appendix F - Ada/300

F 12.3 Deferred Processing
The deferred processing step is the execution of the accept statement for the
interrupt entry. It is performed with signals enabled and with an Ada task
priority specified by the user (but higher than any software priority as required
by the Ada RM, section 13.5.1.2). The accept statement has access to the IN
parameters provided by the Ada handler when the Ada handler made the entry
call. There are no limitations on the code of the accept statement; runtime
calls are allowed.

The connection between the immediate and deferred processing is made by
the Ada runtime. At the end of the immediate processing step, when the Ada
handler returns control to the internal handler in the Ada runtime, the Ada
runtime checks to see if any immediate processing steps remain active (that is,
an Ada signal handler has been called in response to a signal but has not yet
returned). If any immediate processing steps remain active, the Ada runtime
simply returns control to the interrupted context, which will be one of the
currently active Ada signal handlers.

If no immediate processing steps remain active (that is, the Ada signal handler
that is currently returning control to the Ada runtime is the only currently
active Ada signal handler), the Ada runtime identifies all of the tasks and
entries that immediate processing steps have requested be called. There may
be more than one interrupt entry call pending because multiple different
signals may have been received, causing multiple Ada signal handlers to be
simultaneously active. Only when the last active Ada signal handler returns
control to the Ada runtime will the pending tasks or entries be considered as
callable. The Ada runtime will determine for each pending interrupt entry
call whether the accept statement can be executed immediately. If so, the
current task is preempted unless it is of equal or higher priority than any of the
pending interrupt entry calls (for example, the current task is itself executing
an accept statement for a higher priority interrupt). Pending interrupt entry
calls for which the accept can be executed, but which are of a lower priority
than the currently running task, will be made as their priority permits (note
that calls to interrupt entries with identical priorities may occur in all arbitrary
order).

If the accept statement cannot be executed immediately, the rendezvous will
take place according to normal Ada semantics when the server task executes an
accept or select statement for the given entry.

Appendix F - Ada/300 Interrupt Entries 12-3

There are no restrictions on the number of interrupt entries one task can use,
nor on the number of tasks that can use interrupt entries. The only restriction
is that only one entry may be associated with a given HP-UX signal and that
signals reserved by the Ada runtime may not be associated with an interrupt
entry.

The buffering of the interrupt entry call from the Ada handler to the interrupt
entry attempts to ensure that no signal will be lost. It is important that the
average execution time of the interrupt entry be smaller than the signal rate
for the associated signal, otherwise the pool of buffers to hold interrupt entry
parameters will be quickly exhausted. Each buffer is released immediately
before execution of the accept body for the interrupt entry after the parameters
have been copied to the stack of the acceptor task. It is also important that
the execution time of the Ada signal handlers be minimized as the deferred
processing step is not performed when any Ada signal handler remains active.

F 12.4 Handling an Interrupt Entirely in the Immediate
Processing Step
Calling an inierrupt entry in response to a signal is optional. Interrupts can
be handled in a sequential program that has no tasks to call or in a tasking
program without calling an interrupt entry if the Ada handler performs all the
required processing. This can improve performance because the overhead of
task switching is avoided. However, because the Ada handler cannot make Ada
runtime calls and must be compiled with checks off (using the -Roption), the
amount of processing that an Ada handler can do is limited. In addition, if
the Ada handler does all the processing, the Ada program must generally poll
global state information to determine that the signal has been received.

12-4 Interrupt Entries Appendix F - Ada/300

F 12.5 Initializing the Interrupt Entry Mechanism
The compiler provides the package INTERRUPT-MANAGER to support interrupt
entries. This package is in the predefined library.

To use interrupt entries, you must initialize the interrupt manager by calling
this procedure:

procedure INITINTERUPTMANAGER
(NUMBEROFBUFFERS in BUFFER-NUMBER;
MAX.PARAMAREASIZE in BYTE-SIZE;
INTERRUPTSTACKSIZE in BYTE-SIZE := 2048);

This procedure allocates the given number of buffers to hold parameters of
interrupt entries that cannot be processed immediately and allocates a signal
stack of the given size. The size of each buffer is the maximum parameter area
size, plus a fixed overhead of 28 bytes used by the Ada runtime. If the given
signal stack size is zero, all signals are handled on the current stack; therefore,
all stacks nust have sufficient buffer space. Using an interrupt stack allows
better usage of available memory.

There are several techniques that can be used to calculate an appropriate
value for the MAXPARAMAREA_-SIZE parameter. This parameter must be the
size, in storage units, of the largest parameter block required by an interrupt
entry call. A parameter block is an area of memory in which the generated
code for a task entry call temporarily stores the actual parameters of the task
entry call. The address of the parameter block is passed to the Ada runtime
routine ENTRY-CALL which makes the parameters available to the called task
entry when the rendezvous actually occurs (in the case of an interrupt entry,
the Ada runtime copies the parameter block into one of the buffers allocated by
INITINTERRUPTMANAGER until the deferred processing step is reached).

Appendix F - Ada/300 Interrupt Entries 12-5

I Techniques for determining parameter block sizes follows:

1. Refer to section F 4, "Type Representation", to determine the
representations of the various types of parameters. All scalar types and
those record types that occupy less than or exactly 64 bits (eight storage
units) have their sizes rounded up to the next multiple oi 16 bits (two
storage units) within a parameter block. All record types that occupy
more than 64 bits (eight storage units), and all other non-scalar types, are
passed by reference as a 32-bit pointer occupying four storage units in the
parameter block.

2. Use the 'SIZE attribute on each of the parameter types. See the method
above for parameter types whose sizes may be other than expected.

3. Use the -S option when compiling the units that contain the interrupt entry
calls (the Ada signal handlers) and examine the generated code for the call
to determine the size of the parameter block. The parameter block is built
by the generated code just prior to the call to te Ada runtime routine
ENTRY-CALL.

The procedure INIT_-.INTERRUPT-MANAGER must be called at program startup
before any call is made to an interrupt entry from an Ada signal handler.
Entry calls will be lost if the number of buffers is insufficient. The required
number of buffers depends on the frequency of signals. A zero number of
buffers can be used when the signal handler only buffers information and never
calls a interrupt entry.

This procedure raises STORAGE-ERROR if there is not enough memory to allocate
the required buffers and the interrupt stack.

12-b ;nte-ruot Entries Appendix F - Ada/300

F 12.6 Associating an Ada Handler with an HP-UX Signal
You can install a signal handler by calling the following procedure:

procedure INSTALL-HANDLER
(HANDLER-ADDRESS : in SYSTEM.ADDRESS;
SIG : in SYSTEM.ADDRESS;
PRIORITY : in INTERRUPTPRIORITY

:= INTERRUPTPRIORITY'FIRST;

ORIGINAL-HANDLER : in ACTION := REPLACED);

This procedure installs an Ada routine, specified via HANDLERADDRESS, as the
Ada handler for the specified HP-UX signal (SIG) after saving the address
of the original handler. If the Ada handler calls an interrupt task entry, the
signal number passed to this procedure as SIG must be the same as the one
specified in the interrupt entry address clause (see F 12.9, "Address Clauses for
Entries") for that task entry. The PRIORITY parameter specifies the priority
of the entry call to be made by the handler (all accept statements will run
with this priority unless they are themselves within an accept statement
executed at higher priority.) The ORIGINAL-HANDLER parameter controls
whether the current signal handler, the one the Ada handler is replacing, is to
be called before (FIRST) or after (LAST) the new Ada handler or not called at
all (REPLACED).

The INSTALL-HANDLER procedure must be called from a scope that encloses the
declaration of the Ada procedure that is being installed as the Ada handler.
A convenient technique is to declare the Ada handler procedure immediately
within a library level package and place the call to INSTALL-HANDLER in
the package body block. INSTALLHANDLER will not detect any error if this
restriction is violated; however, unexpected program behavior or program
failure may occur when an incorrectly installed Ada handler is invoked.

The Ada handler must be a procedure with one parameter of type
SYSTEM.ADDRESS and without inner units. The procedure can only reference
local or global objects, excluding objects of an enclosing frame, and must be
compiled with checks off (using the -R option). If an entry call is made in an
Ada handler, the task the entry belongs to must be a global object.

The Ada handler must not call any Ada runtime system routines (either
explicitly or implicitly) other than simple entry calls to interrupt entries
because some of the Ada runtime routines update critical runtime data

Appendix F - Ada/300 Interrupt Entries 12.7

structures and must not be reentered during such updates. Specifically, neither
timed nor conditional entry calls may be made.

The Ada handler must not call HP-UX routines or other non-Ada code, either
via pragma INTERFACE or via a binding.
If the Ada handler calls another Ada procedure or function, that procedure or

function must follow these same constraints.

The HP-UX signal currently being handled is masked for the duration of the
Ada handler.

The address of the Ada procedure to use as the Ada handler can be obtained
by the 'ADDRESS attribute, which is only valid after elaboration of the
procedure body.

The procedure INSTALL-HANDLER raises STORAGE.ERROR if MAX-HANDLERS
handlers have already been defined.

F 12.6.1 Determining If Your Ada Handler Makes Ada Runtime Calls

If you are not sure if your Ada handler makes any Ada runtime system
routine calls, you can compile the Ada handler with the -S option to obtain
an assembly language listing. Then, look at the listing of the generated code
for your Ada handler procedure. If calls to any of the following Ada runtime
system routines appear, your Ada handler is "unsafe"

12-8 Interrupt Entries Appendix F - Ada/300

F 12.7 Disassociating an Ada Handler from an HP-UX
Signal
The Ada handler for a given HP-UX signal can be removed and the original
HP-TXX signal handler (or signal behavior) restored with this procedure

procedure REMOVEHANDLER (SIG : in SYSTEM.ADDRESS);

This procedure only needs to be called when it is no longer necessary to
have a handler for a particular signal. All Ada handlers are automatically
disassociated from their HP-UX signals when the main program terminates.

The procedure REMOVE-HANDLER raises PROGRAM.ERROR if no handler has been
installed for the given signal.

F 12.8 Determining How Many Handlers are Installed
Use the following procedure to determine how many handlers have already
been installed:

function HANDLER.COUNT return HANDLER-NUMBER;

F 12.9 When Ada Signal Handlers Will Not Be Called
When the procedure SYSTEM_-ENVIRONMENT.SUSPEND_-ADA_-TASKING is called,
the HP-UX signals for which Ada signal handlers have been installed,
will be masked. That is, the Ada signal handlers will not be called if
one of the signals should occur. At most one instance of any given signal
will be remembered while the signals are masked. When the procedure
SYSTEM_- ENVIRONMENT.RESUME-_ADA.TASKING is called. the signals for which Ada
signal handlers have been installed will be unmasked. Any signal that occurred
while the masking was in effect will then be delivered to the Ada program and
will invoke the associated Ada signal handlers (at most one instance of any
such signal will have been remembered while the signals were masked).

12-10 Interrupt Entries Appendix F - Ada/300

ABORTSTMT END-ACTIVATION FREETEMPGH

ACCEPTSTMT ENUM1_PRED FREEVARSSELT

ACTIVATECOLLECTION ENUM1_SUCC INITCOLLECTION

ALLOCFIXSSELT ENUM1_VALTOPOS INITFIXSSELT

ALLOCGO ENUM2_PRED INITHANDLER

ALLOCLO ENUM2_SUCC INITMASTER

ALLOCSMALLFIXELT ENUM2_VALTOPOS INITSMALLFIXELT

ALLOCTEMP ENUM4_PRED INITVARSSELT

ALLOCTEMPGH ENUM4SUCC INTEGER-IMAGE

ALLOCVARSSELT ENUM4_VALTOPOS INTEGER-VALUE

CALLABLE ENUMPOS INTEGER-WIDTH

COMPLETE-MASTER ENUMWIDTH NULLBODYACCEPTSTMT

COMPLETE-TASK ENVTASKMASTER SELECTWITHTERMINATE

CONDCALL FIXED-FORE SIMPLE-SELECT

CONDSELECT FIXED-LARGE SIMPLETIMEDSELECT

COUNT FIXED-MANTISSA TERMINATED

CREATE-TASK FREEFIXSSELT TERMINATION-COMPLETE
CURRENTOBJECTOFTASKTYPE FREE-LIST TIMED-CALL

DELAYSTMT FREESMALLFIXELT TIMED-SELECT
DESTROY-COLLECTION FREETEMP

A call to ENTRY-CALL is safe as long as it is calling the task entry declared as
an interrupt entry for the HP-UX signal that caused the Ada signal handler to
be invoked.

To help you understand what Ada language construct might cause such a call
to be made, a description of each of the above Ada runtime routines is listed in
section F 12.13, "Ada Runtime Routine Descriptions".

Appendix F - Ada/300 Interrupt Entries 12-9

Warning The Ada program, as well as Interface code called by the Ada
program, should not unmask any of the HP-UX signals for which

1Ada signal handlers are installed while Ada tasking has been
suspended. Doing so will cause unpredictable and possibly
erroneous program behavior.

F 12.10 Address Clauses for Entries
According to section 13.5.1 of the Ada RM, an address clause for an interrupt I
entry has the following form:

task INTERRUPT.HANDLER is
entry INTERRUPT(...);
for INTERRUPT use at ...

end INTERRUPT-HANDLER;

An interrupt entry may have zero or more parameters of mode IN. Parameters
of mode IN OUT or OUT are not permitted; see section 13.5.1(1) in the Ada
RM for details. The expression in the address clause must be of type
SYSTEM. ADDRESS and is interpreted as a signal number by the runtime system.
A function SIGNAL is provided by the INTERRIPTMANAGER package to convert
an integer to a SYSTEM. ADDRESS. Note that a with statement for the package
SYSTEM must be specified for the context in which such an address clause
appears.

F 12.11 Example of Interrupt Entries
To be provided???????????

Appendix F - Ada/300 Interrupt Entries 12-11

F 12.12 Specification of the package
I NTERRUPT_ MANAGER

package INTERRUPT-MANAGER is

-- This package provides zupport fcr signal nandlers.
-- It must NOT be recompiled as it is already compiled in the
-- predefined library.

INTERRUPT-LEVELS : constant := 7;

-- Number of priority levels for interrupt entries.

type INTERRUPT-PRIORITY is range
SYSTEM.PRIORITY'LAST + 1 .. SYSTEM.PRIORITY'LAST

+ INTERRUPT-LEVELS;

for INTERRUPT.PRIORITY'SIZE use 32;

-- This type defines the range of allowed priorities for calls
-- to interrupt entries.

type ACTION is (FIRST, LAST, REPLACED);
for ACTION use (FIRST => 0, LAST => 1, REPLACED => 2);

-- This type defines the actions to be taken with regard to the
-- previous handler for the signal (if any):
-- * FIRST: previous handler is to be called before
-- the Ada handler.
-- * LAST: previous handler is to be called after

-- the Ada handler.

-- * REPLACED: previous handler is not to be called.

12-12 Interrupt Entries Appendix F - Ada/300

type BUFFER-NUMBER is range 0..2**15-1;

-- Number of buffers to hold parameters of interrupt entry
-- calls that cannot be processed immediately.

t-T BYTE-SIZE is range 0..2**15-1;

-- Used to specify sizes in bytes.

MAX-HANDLERS : constant := 32;

-- Maximum number of installable handlers.

type HANDLER-NUMBER is range O..MAXHANDLERS;

-- Number of installed handlers.

NOFREEBUFFERS : BOOLEAN := FALSE;

-- Set to TRUE if a signal could not be handled because no
-- buffer was available to hold the parameters. (In such cases
-- it is not possible to raise TASKING-ERROR because the entry
-- call was not made by a normal task.) If NOFREEBUFFERS
-- becomes true it is recommended that the number of buffers
-- specified when calling INITINTERRUPTMANAGER (see below)
-- be increased, or if possible increase the priority of the
-- called task. The user can reset this variable to FALSE at
-- any time.

pragma SHARED (NOFREEBUFFERS);

TASK.NOTCALLABLE : BOOLEAN :- FALSE;

-- Set to TRUE if a signal could not be handled because the

Aannidix F - Ada/300 Interrupt Entries 12-13

-- called task was not callable (it was completed or
-- terminated). The user can reset this variable to FALSE
-- at any time.

pragma SHARED (TASKNOTCALLABLE);

-- Signal definition:

type SIGNAL-NUMBER is range 0..32;
function SIGNAL is

new UNCHECKEDCONVERSION (SIGNAL-NUMBER, SYSTEM.ADDRESS);

procedure INITINTERRUPTMANAGER
(NUMBEROFBUFFERS : in BUFFER-NUMBER;
MAXPARAMAEASIZE : in BYTE.SIZE;
INTERRUPTSTACKSIZE : in BYTE-SIZE :- 2048);

-- This procedure allocates the specified number of buffers to
-- hold the parameters of interrupt entry calls that cannot be
-- processed immediately, and allocates a signal stack of the
-- given size. The size of each buffer is the maximum
-- parameter area size plus a fixed overhead of 28 bytes used
-- by the Ada runtime. If the given signal stack size is zero,
-- all signals are handled on the current stack, and all stacks
-- must then have sufficient buffer space.

-- This procedure must be called before any Ada signal handler
-- can be installed and hence before any interrupt entry call
-- can be made from an Ada signal handler. Signals can be
-- lost if the number of buffers is insufficient. The number
-- of buffers required depends on the frequency of signals.
-- The n',mber of buffers can be specified as zero if all Ada
-- signal handlers completely handle their signal and never
-- call an interrupt entry.

-- This procedure raises the exception STORAGEERtOR if there

12-14 Interrupt Entries Appendix F - Ada/300

-- is not enough memory to allocate the required bufiers and/or
-- the signal stack.

procedule INSTALL-HANDLER
(HANDLER.ADDRESS : in SYSTEM. ADDRESS;
SIG : in SYSTEM.ADDRESS;
PRIORITY : in INTERRUPT-PRIORITY

:= INTERRUPTPRIORITY'FIRST;
ORIGINAL-HANDLER : in ACTION := REPLACED);

-- This procedure installs the Ada routine at the specified
-- address, as the Ada signal handler for the specified signal,
-- after saving the address of the current signal handler (if
-- any). The specified priority determines the priority of all
-- entry calls made by the handler (all accept statements will
-- run with this priority).

-- The address of the Ada signal handler can be obtained with
-- the attribute 'ADDRESS (which is only valid after
-- elaboration of the procedure body). The Ada signal handler
-- receives control with the signal it is handling blocked, but
-- other non-reserved signals are only blocked if they have an
-- Ada signal handler routine and it is currently active (has
-- been called in response to the signal but has not yet
-- returned). The Ada signal handler must not make implicit
-- or explicit calls to the Ada runtime, other than a simple
-- entry call to the interrupt entry with the address clause
-- corresponding to the signal being handled. Neither timed
-- nor conditional entry calls may be made from an Ada signal
-- handler.

-- The Ada signal handler must be a procedure with one
-- parameter of type ADDRESS, and without inner units. The
-- procedure can only reference local or global objects
-- (excluding objects of enclosing frames). The Ada signal
-- handler procedure must be compiled with checks off
-- (using the -R option).

Appendix F - Ada/300 Interrupt Entries 12-15

-- This procedure raises the exception STORAGE-ERROR if
-- MAX-HANDLERS handlers have already been defined.

procedure REMOVE-HANDLER (SIG : in SYSTEM.ADDRESS);

-- This routine removes the handler for the given signal and
-- restores the oiiginal handler. This procedure may be useful
-- if for some reason the task that normally handles this
-- signal is temporarily (or permanently) no longer able
-- to do so.

-- This procedure raises the exception PROGRAM.ERROR if no
-- handler has been installed for the given signal number..

function HANDLER-COUNT return HANDLER-NUMBER;

-- This function returns the number of installed Ada signal
-- handlers.

end INTERRUPT-MANAGER;

12-16 Interrupt Entries Appendix F - Ada/300

F 12.13 Ada Runtime Routine Descriptions
Tables 12-1 through 12-7 lists Ada runtime system routines and their function.
If calls to any of these routines appear in your Ada handler, the handler is I
"unsafe", as described in section F 12.6.

Table 12-1. Heap Management Routines

Routine Description

ALLOCGO Allocates a global object.

ALLOCL0 Allocates a local object.

ALLOCTEMP Allocates a temporary object.

ALLOCTEMPGH Allocates a global temporary object.

FREE-LIST Cleans up head objects at the end of a block.

FREETEMP Frees a temporary object.

FREE-TEMPGH Frees a global temporary object.

Table 12-2.

Collection Management (no STORAGESIZE representation clause)

Routine Description

ALLOCSMALLFIXELT Allocates a space for a new object in the collection.

FREESMALLFIXELT Frees the space allocated to the object of the
corresponding coliection.

INITSMALLFIXELT Initializes the descriptor for a collection with small
and fixed size elements.

Appendix F - Ada/300 Interrupt Entries 12-17

Table 12-3.
Collection Management (collections with a STORAGE-SIZE

representation clause)

Routine Description

Fired element size

ALLOCFIXSSELT Allocates a space for a new object in the collection.

FREEFIXSSELT Frees the space allocated to the object of the
corresponding collection.

IITFIXSSELT Initializes the descriptor for a collection with fixed
size elements.

Variable element size

ALLOC_VARSSELT Allocates a space for a new object in the collection.

FREE-VARSSELT Frees the space allocated to the object of the
corresponding collection.

INITVARSSELT Initializes the descriptor for a collection with
variable size elements.

12-18 Interrupt Entries Appendix F - Ada/300

Table 12-4. Tasking Routines

Routine Description

ABORTSTMT Aborts the tasks in the argument lists and abort all
their dependents.

ACCEPTSTMT Implementation of a simple accept statement.

ACTIVATE-COLLECTION Called after the elaboration of a declarative region
that contains task objects and at the end of the
execution of an allocator of an object with one or
more task components. This routine activates a
collection)f tasks in parallel.

COMPLETE-MASTER Called when exiting a block or subprogram master
unit to complete a master unit and deallocate its
resource.

COMPLETE-TASK Called when a task body completion point is
reached and is about to execute the cleanup
sequence of its task body to terminate the task and
its dependents.

C0NDCALL Implementation of a conditional entry call.

CONDSELECT Implementation of a select statement with an else
part.

CREATE-TASK Called when a single task specification or task
object declaration is elaborated and when an
allocator is executed that has task components.
This routine creates a new task object.

CURRENTOBJECT_ Called when a task is referenced from the task body
OFTASKTYPE of a task type. This routine maps a task unit name

to the referenced task when the unit name is used
to refer to a task object within its body.

DELAYSTMT Implemention of a delay statement.

Contnued on the next page.

Appendix F - Ada/300 Interrupt Entries 12-19

Table 12-4. Tasking Routines (Continued)

Routine Description

DESTROY-COLLECTION Called when an exception is raised during the
execution of an allocator for an object with one or
more task components. This routine terminates any
unactivated tasks in the collection.

ENDACTIVATION Implementation of a simple entry call. Note: a call
to this routine is safe as long as it is calling the task
entry declared as an interrupt entry for the HP-UX
signal that caused the Ada signal handler to be
invoked.

ENTRY-CALL Implementation of a simple entry call. This call :s
safe as long as it calls a task entry declared as an
interrupt entry for the HP- UX signal that caused
the Ada signal handler to be invok, d.

ENVTASK _ASTER Called when either the main program has not been
invoked and a library package is being elaborated,
or the main program has been invoked and an
allocator is to be executed for an access type in a
library package. This routine initializes an
activation collection for tasks directly dependent on
a library package.

INITCOLLECTION Called at the beginning of a unit that declares
static task objects, and as the first action of the
execution oi an allocator for an object containing
any tasks. This routine initializes an empty
collection of tasks to be activated in parallel.

INITHANDLER Called at the ocurrence of an address clause for a
task entry. This routine declares that an entry is
associated with an interrupt in the calling task.

Continued on the next page.

12-20 Interrupt Entries Appendix F - Ada/300

Table 12-4. Tasking Routines (Continued)

Routine Description

INITMASTER Called at the beginning of a master unit to initialize
an internal data structure MASTER-INFO.

NULL-BODYACCEPTSTMT Implementation of an accept statement that has a
null statement list in its body.

SELCT-WITHTERMINATE Implementation of a select statement with a
terminate alternative.

SIMPLE-SELECT implementation of a select statement with only
accept alternatives.

SIMPLETIMED-SELECT Implementation of a select statement with one
delay alternative without a guard or with a static
open guard.

TERMINATE-COMPLETE CLIled when task body is complete and cleanups
have been performed. The routine propagates the
termination information up the hierarchy and
deallocates the work space; the runtime schedules
another task

TIMED-CALL Implementation of a timed entry call.

TIMED-SELECT lmplementation of a select statement with several

delay alternatives or with one guarded delay
alternative.

Appendix F - Ada/300 Interrupt Entries 12-21

Table 12-5. Attributes Routines

Routine Description

ENUMPOS Implementation of T'VALUE, where T is an
enumeration type.

ENUMWIDTH Implementation of T'WIDTH, where T is an

enumeration type.

FIXED-FORE Implementation of T'FORE, where T is a fixed point
subtype.

FIXED-LARGE Implementation of T'LARGE, v'here T is a fixed poirn
subt) pe.

FIXED-MANTISSA Implementation of T'MANTISSA, where T is a fixed
point subtype.

INTEGER-IMAGE Implementation of T'IMAGE, where T is an inLeger
type.

INTEGER-VALUE Implementation of T'VLLUE, where T is an integer
type.

INTEGER-WIDTH Implementation of T'WIDTH, where T is an integer
Stype.

Table 12-6. Attributes for Tasks Routines

Routine Description

CALLABLE Implemenitation of T'CALLABLE, where T is a task.

COUNT Implementation of E'COUNT, where E is an entry of a
task.

TERMINATED Implementaticn of T'TERMINATED. where T is a task.

12-22 Interrupt Entries Appendix F - Ada/300

I_

Table 12-7.
Support for Enumeration Representation Clauses Routines

Routine Description

ENUMiPRED Implementation of TPRED attribute for types whose
VAL is implemented on one byte; that is, types with
no more than 128 values.

ENUM2_PRED Implementation of T'PRED attribute for types whose
VAL is implemented on two bytes; that is, types with
more than 128 values but less than ??? values.

ENUM4_PRED Implementation of TPRED attribute for types whose
VAL is implemented on four bytes; that is, types
with more than 32767 values.

ENUMiSUCC Implementation of T'SUCC attribute for types whose
VAL is implemented on one byte; that is, types with
no more than 128 values.

ENUM2_SUCC Implementation of T'SUCC attribute for types whose
VAL is implemented on two bytes; that is, types with
more than 128 values, but less than 32767 values.

ENUM4-SUCC Implementation of 'SUCC attribute for types whose
VAL is implemented on four bytes; that is, types
with more than 32767 values.

ENUMIVALTOPOS Convert T'VAL to T'POS for types whose VAL is
implemented on one byte; that is, types with no
more than 128 values.

ENUM2_VALTOPOS Convert T'VAL to T' POS for types whose VAL is
implemented on two bytes; that is, types with more
than 128 values, but less than 32767 values.

ENUM4_VALTOPOS Convert T'VAL to T'POS for types whose VAL is
implemented on four bytes; that is, types with more
than 32767 values.

Appendix F - Ada/300 Interrupt Entries 12-23

Index

A objects, 6-1
access packages, 6-2

direct, 8-33 subprograms, 6-2
sequential, 8-33 task entries, 6-3

access protection, 8-11 tasks, 6-2
access rights, 8-3, 8-7 alignment
access types array types, 4-33

alignment, 4-25 enumeration types, 4-6
as function results, 11-10, 11-24, 11-56 integer types, 4-12
bit representation, 11-9, 11-56 record types, 4-36, 4-50
caution, 11-10 APPEND, 8-27
collection size specification, 4-23, 4-24 'ARRAY-DESCRIPTOR, 4-47
FORTRAN, 11-40 ARRAY-DESCRIPTOR, 2-1
general considerations, 11-9 array objects, 11-25
HP C subprograms, 11-24 arrays
illustration of passing methods, 11-9 as function results, 11-41
internal representation, 4-23 caution, 11-41
I/O operations, 8-13 unconstrained, 7-1
minimum size, 4-25 array types
not returned as function results, 11-40 alignment, 4-30
passing to external subprograms, as function results, 11-11, 11-57

11-9, 11-56 C language, 11-25
size, 4-25 correspondence with HP Pascal types,
value of 'STORAGE-SIZE, 4-23 11-56

address default size, 4-29
pointer, 11-19, 11-24, 11-40, 11-53, gaps between components, 4-29

11-56 general considerations, 11-11
scalar parameter, 11-33 layout, 1-12, 4-29

ADDRESS, 2-2 minimum size, 4-29
address clauses Pascal, 11-56

constants. 6-2 passing to external subprograms,
data objects, 6-3 11-11, 11-41, 11-56

Index-I

pragma PACK, 4-29 passing to external subprograms,
size of dynamic arrays, 4-32 11-7, 11-36
string types, 11-11 predefined, 3-4

ASCII, 3-14, 8-10 returncd as function results, 11-21
assembly language buffer, 8-8, 8-10, 8-23

access types, 11-16 BUFFER-SIZE, 8-23
array types, 11-16
Boolean types, 11-15 C
character types, 11-15 calling conventions, 1-3, 11-1
enumeration types, 11-15 catenation operators, 3-13
floating point types, 11-15 char, 11-20, 11-22, 11-25, 11-54
integer types, 11-15 CHARACTER, 3-12, 11-19, 11-22,
processor registers, 11-14 11-41, 11-54
record types, 11-16 character types
scalar types, 11-15 as function results, 11-7
subprograms, 11-14 bit representation, 11-7, 11-22, 11-54

asynchronous signals, 9-13 calling FORTRAN, 11-32
attribute calling Pascal, 11-54

'ADDRESS, 2-2 correspondence with HP C types,
implementation-dependent, 2-1 11-22
'POS, 11-36 general considerations, 11-7

passing to external subprograms,
B 11-22
binary files, 8-32 checks, 11-3, 11-11
binder C language

and pragma INTERFACE, 1-6 access types, 11-24
bit ordering access types as function results, 11-IS

component clause, 4-36 array types, 11-25
blocked signal, 11-67, 11-69 bit representation of parameters passed
BOOLEAN, 4-3, 11-36 to, 11-18
BOOLEAN'POS(FALSE), 11-36, 11-54 Boolean types, 11-21
BOOLEAN'POS(TRUE), 11-36, 11-54 calling, 11-17
Boolean types character types, 11-22

as function results, 11-7 enumeration types, 11-20
bit representation, 11-7, 11-36 integer correspondence, 11-19
C language, 11-21 integer types as function results,
converting to integer types, 11-21 11-19
FORTRAN, 11-36 real types, 11-18
general considerations, 11-7 record types, 11-31
Pascal, 11-54 scalar types, 11-18

scalar types as function results, 11-18

Index-2

types returned as function results, alignment, 4-6
11-18 enumeration types

compiler as function results, 11-6, 11-54
errors, 11-4 bit representation, 11-6, 11-54
limitations, 10-1 default size, 4-6

COMPLEX, 11-49 FORTRAN, 11-35
components of a record,organization of, general considerations, 11-6

11-4 internal representation, 4-3, 4-5, 4-6
composite types, 11-2 minimum size, 4-5, 4-6
consistency checks, 11-3 Pascal, 11-54
CONSTRAINT-ERROR, 3-13 passing to external subprograms,
CONTROLLED, 1-18 11-6, 11-35, 11-54
COUNT'LAST, 8-3 returned as function results, 11-20
CREATE, 8-2, 8-3, 8-7, 8-8, 8-19 syntax, 4-2

unsigned representation, 4-6
D errors
default access protection, 8-11 compiler, 11-4
delay statement, 9-9, 11-67 USE-ERROR exception, 8-25
device, 8-3, 8-10, 8-12, 8-23 exceptions
dimensions handling, 9-5, 9-6

declared in reverse order, 11-41 predefined, 3-13
illustration of reversed order, 11-43 execution of delay statements, 11-67

direct access, 8-33 EXPORT, 1-1
direct files expression, 11-37

elements, 8-8 extension, 11-6, 11-20
index, 8-8 external files

DIRECT-1O files, 8-8, 8-32 access rights, 8-7
disks, 8-12 appending to, 8-27
double, 11-23 associating Ada file objects with, 8-2,
DOUBLE COMPLEX, 11-49 8-11
DOUBLE PRECISION, 11-39 correspondence with HP-UX files, 8-3
DURATION, 3-12 definition, 8-1
dynamic components, 4-41, 11-13 errors, 8-25

existing file specified to CREATE,
E 8-4

ELABORATE, 1-1, 1-13 names, 8-3
elements, 8-8 protection of, 8-11
embedded expression, 11-37 shared, 8-11, 8-12
ENDOFFILE, 8-10 standard implementation of, 8-7
ENDOFPAGE, 8-10 EXTERNAL-NAME, 1-1
enumeration external subprograms

Index-3

delay statements, 9-9 characteristics, 8-1
general aspects of calling, 11-1 correspondence of Ada with external,
I/O on files opened by Ada, 11-70 8-2
parameter values, 11-3 direct, 8-8, 8-11
passing access types to, 11-9, 11-24, DIRECTIO, 8-32

11-56 disk, 8-23
passing array types to, 11-11, 11-41, external, 8-3, 11-3

11-56 HP-UX pathname, 8-1
passing Boolean types to, 11-7, 11-36 I/O, 8-1
passing character types to, 11-22 length of elements, 8-8
passing enumeration types to, 11-20, name of external, 8-3

11-35, 11-54 object, 1-6, 8-2
passing floating point types, 11-55 protecting, 8-21
passing floating point types to, 11-8, protection flags, 8-21

11-23, 11-39 sequential, 8-7, 8-11, 8-12, 8-27
passing integer types to, 11-6, 11-33, SEQUENTIALIO, 8-32

11-53 shared, 8-11, 8-12
passing record types to, 11-62 tasking, 8-11
passing string types to, 11-11, 11-25, terminal input, 8-19

11-44 terminator, 8-10
passing task types to, 11-13 text, 8-10, 8-11, 8-27, 8-30
potential problems using, 11-66 fixed point
pragma INTERFACE, 1-4 predefined, 4-17
protecting code with a critical section, types, 4-17

11-69 fixed point types
signals, 9-9 alignment, 4-22
types not passed as parameters to, as function results, 11-8, 11-23, 11-55

11-2 default size, 4-21
external subroutines names, 1-6 external subprograms, 11-2

general considerations, 11-8
F internal representation, 4-18

FIELD'LAST, 8-3 minimum size, 4-19, 4-22
files parameters, 11-23

Ada definition, 8-1 unsigned representation, 4-19, 4-22
appending, 8-27 value of 'SMALL, 4-18
associate NAME with file object, 8-2 FLOAT, 3-10, 11-23, 11-41, 11-55
associating external with file object, floating point types

3-1 alignment, 4-16
binary, 8-32 as function results, 11-8, 11-39
blocking, 8-28 bit representation, 11-8, 11-23
buffering, 8-23 calling FORTRAN, 11-32

Index-4

default size, 4-16 Boolean types as, 11-21
FORTRAN, 11-39 enumeration types as, 11-20, 11-54
general considerations, 11-8 fixed point types as, 11-55
internal representation, 4-13 floating point types as, 11-23, 11-39
minimum size, 4-16 integer types as, 11-33
Pascal, 11-55 record types as, 11-31, 11-48, 11-62
passing to external subprograms, types returned as, 11-18

11-8, 11-39, 11-55 types returned from HP assembly
passing to HP C, 11-23 language, 11-14
predefined, 4-13 types returned from HP C, ii-19

FORM, 8-2, 8-7 types returned from HP FORTRAN
FORM parameter 77, 11-32

appending to a file, 8-27 types returned from HP Pascal, 11-51
attributes, 8-19
blocking, 8-28 G
file buffering, 8-23 gap sizes, 4-30
files protection flags, 8-21 generating code, 1-13
file structuring, 8-30 GROUP, 8-21
format, 8-19
shared files, 8-25 H
terminal input, 8-29 HP-UX

FORTRAN library function, 1-6
access types, 11-40 pragma EXPORT, 1-7
array types, 11-41 pragma EXTERNAL-NAME, 1-8
Boolean types, 11-36 pragma INTERFACE, 1-6
calling subprogram, 11-32 signals, 9-1
enumeration types, 11-35 system call, 1-6
equivalence of types, 11-49 utilities and routines, 11-70
fixed point types, 11-39
floating point types, 11-39
integer correspondence, 11-33 implementation-dependent
integer types, 11-33 attributes, 2-1
libraries, 11-32 characteristics of external files, 8-7
other types, 11-49 implicit components, 4-38
record types, 11-48 implicit parameters, 11-32, 11-44
scalar types, 11-33 IMPROVE, 1-1, 1-12
string types, 11-44 INDENT, 1-1, 1-10

function results index
access types, 11-24 direct files, 8-8
access types as, 11-40, 11-56 set when file opened, 8-27
array types as, 11-41, 11-57 indirect components, 4-40

Index-5

INLINE, 1-1, 1-14 multiple operations, 8-11
int, 11-19 operation, 8-12
INTEGER, 11-4, 11-6, 11-19, 11-41, packages, 8-1, 8-2

11-53 performed on objects, 8-1
integer type readable, 8-10

alignment, 4-12 system dependencies, 8-17
size, 4-10

integer types K
as function results, 11-6, 11-33 keyboards, 8-12
bit representation, 11-53
calling FORTRAN, 11-32 L
compatibility with HP Pascal types, LAN, 8-13

11-52 length clauses
correspondence between Ada and HP collection size specification, 4-23, 4-24

C, 11-19 size specification, 4-1, 4-6, 4-10, 4-11,
correspondence with FORTRAN 4-16, 4-21, 4-22, 4-29, 4-30, 4-32,

integers, 11-33 4-33, 4-34, 4-49
default size, 4-10 'SHALL of a fixed point type, 4-18
general considerations, 11-6 storage, 4-26
internal representation, 4-7 task activation size specification, 4-26
minimum size, 4-8, 4-11 length clauses\size specification, 4-3
passing to external subprograms, libraries

11-6, 11-33, 11-53 HP C, 11-18
predefined, 4-7 HP FORTRAN 77, 11-32
unsigned representation, 4-8, 4-11 library units, 5-1

interactive devices, 8-12, 11-67 limitations
INTERFACE Ada development environment, 10-4

limitation, 10-7 compiler, 10-1
pragma, 1-1, 1-2, 11-17, 11-32, 11-50 on pragma PACK, 4-32

INTERFACE-NAME, 1-1, 1-2 on record representaion clauses, 4-38
interrupt, 11-66, 11-67 on the value of 'SMALL, 4-18
interrupt entries, 12-1 opening or creating files, 10-5
I/O path and component sizes, 10-5

access types, 8-13 user-written applications, 10-5
calls to interactive devices, 11-67 line terminator, 8-10
considered as external files, 8-3 link editor, 1-6
implementation-generated LIST, 1-1, 1-11

characteristics, 8-1 local area networks, 8-13
intermixing HP-UX utilities and Ada LOGICAL, 11-36

routines, 11-70 long, 11-19
local area networks, 8-13

Index-6

LONG-FLOAT, 3-11, 11-23, 11-39, STANDARD, 3-4, 3-5, 3-7, 3-8, 3-10,
11-41, 11-55 3-12, 3-14, 3-16

long int, 11-19 SYSTEM, 3-1, 3-3
LONGREAL, 11-55 PAGE, 1-1, 1-11

page terminator, 8-10
M parameter
MASK, 8-11 count, 11-1
MEMORY-SIZE, 1-18 modification of values, 11-3

passing conventions, 11-17, 11-32,
N 11-33, 11-50, 11-53
NAME, 8-2 passing modes, 11-1, 11-3, 11-32,
names 11-33

for predefined library units, 5-1 values and bit representations, 11-4
networks, 8-13 parameter passing conventions, 11-44
NFS, 8-13, 8-14 Pascal
nonblocking, 8-28 access types, 11-56
NON-BLOCKING attribute, 8-28 array types, 11-56
NOT-SHARED, 8-25 Boolean types, 11-54
NUMERIC-ERROR, 3-13 character types, 11-54

enumeration types, 11-54
o fixed point types, 11-55
object address location, 11-56 floating point types, 11-55
object descriptors, 11-24 integer types, 11-52
object file, 1-6 record types, 11-62
object library, 1-6 scalar types, 11-52
offset, 11-12 string types, 11-58
OFFSET, 2-1 subprograms, 11-50
OPEN, 8-2, 8-3, 8-7, 8-8, 8-19, 8-27 user-defined types corresponding to
operating system, 8-1, 11-66, 11-67 Ada types, 11-53
OPTIMIZE, 1-18 passing conventions, 1-2
order pathname, 8-1, 8-3

reversed, 11-41 pointer, 11-1, 11-6, 11-7, 11-9, 11-19,
row major, 11-42 11-24

other types, 11-49 pointer-to-char, 11-20, 11-22
OWNER, 8-21 portability, 11-24

POS, 11-36
P POSITIVE-COUNT, 8-8, 8-10

PACK, 1-1, 1-12 pragma
package CONTROLLED, 1-18

ASCII, 3-14 ELABORATE, 1-1, 1-13
I/O, 8-2, 8-3 EXPORT 1-1

Index-7

EXTERNAL-NAME, 1-1 fixed point types, 11-8, 11-23, 11-39,
implementation-specific, 1-1 11-55
IMPROVE, 1-1, 1-12, 4-1, 4-38, 4-48 floating point types, 11-8, 11-23,
INDENT, 1-1, 1-10 11-39, 11-55
INLINE, 1-1, 1-14 general considerations, 11-8
INTERFACE, 1-1, 1-2, 11-17, 11-32, 'RECORD -DESCRIPTOR, 4-47

11-50 RECORD-DESCRIPTOR, 2-1
INTERFACE-NAME, 1-1, 1-2 record representation clauses, 11-12
LIST, 1-1, 1-11 'RECORD-SIZE, 4-45
MEMORY-SIZE, 1-18 RECORD-SIZE, 2-1, 8-32
OPTIMIZE, 1-18 record size, 11-13
PACK, 1-1, 1-12, 4-1, 4-6, 4-11, 4-22, record types

4-29, 4-30, 4-32, 4-33, 4-34 as function results, 11-13, 11-31,
PAGE, 1-1, 1-11 11-48, 11-62
predefined, 1-1 assignment to a discriminant, 11-13
PRIORITY, 1-1, 1-16 bit representation, 11-12
SHARED, 1-1, 1-17 C language, 11-31
STORAGE-UNIT, 1-18 compiler adds implicit components,
SUPPRESS, 1-1, 1-15 11-13
SYSTEM.ADDRESS'IMPORT, 2-3 compiler errors, 11-4
SYSTEM-NAME, 1-18 components,default size, 4-34, 4-37
tasking programs, 1-16 components,minimum size, 4-34
unimplemented, 1-18 components reordered by compiler,

predefined BOOLEAN type, 4-3 11-12
predefined integer types, 4-7 composite components, 11-13
predefined library units, 5-1 direct components, 4-40
PRIORITY, 1-1, 1-16 dynamic components, 11-13
PROGRAM-ERROR, 3-13 FORTRAN, 11-48
protection general considerations, 11-12

external files, 8-11 implicit component
parameter, 11-3 'ARRAYDESCRIPTOR, 4-47

protection of interfaced code from signals, implicit component 'OFFSET, 4-44
9-13, 11-69 implicit component

PUT, 8-10 'RECORD-DESCRIPTOR,
4-47

R implicit component 'RECORD-SIZE,

random access devices, 8-12 4-45
ranges, 11-25, 11-52 implicit components, 4-38
REAL, 11-39, 11-67 implicit component
real types 'VARIANT-INDEX, 4-45

bit representation, 11-8 indirect components, 4-40

Index-8

layout, 1-12, 4-34, 4-37, 11-12 string types, 11-44, 11-46
offset, 11-12 scheduling, 11-67
parameter passing modes, 11-3 sequential access, 8-33
Pascal, 11-62 SEQUENTIALIO files, 8-7, 8-32
passing to external subprograms, SHARED, 1-1, 1-17, 8-25

11-12, 11-62 short, 11-19
record representation clauses, 11-12 short int, 11-19
size of record, 11-13 SHORT-INTEGER, 3-8, 4-11, 11-6,
syntax, 4-34 11-19, 11-36, 11-41, 11-53
unconstrained, 7-1 SHORTSHORTINTEGER, 3-7, 11-6,

RECORD-UNIT, 8-32 11-19, 11-25, 11-53
reformatter, 1-10 SIGALRM, 9-13, 11-67, 11-69
representation clauses SIGBUS signal, 9-6

data objects, 4-1 SIGFPE signal, 9-7
enumeration, 4-1, 4-3 SIGHUP, 9-10
enumeration types, 11-6 SIGILL signal, 9-7
pragma PACK, 1-12 SIGINT, 9-10
record, 4-1, 4-6, 4-11, 4-22, 4-34, 4-36, signals

4-37, 4-44, 4-45, 4-47, 4-48, 4-50 asynchronous, 9-13
reserved signal, 11-69 blocked, 11-69
restrictions, 7-1, 8-3, 10-1, 11-23, 11-37 HP-UX, 9-1
RESUM EADATASKING, 11-69 interruption, 11-67
return result pointer, 11-1 subprograms, 11-66
reverse order, 11-41 SIGPIPE, 9-10
row major order, 11-42 SIGQUIT, 9-10
runtime, 11-66, 11-69 SIGSEGV signal, 9-7
run-time checks, 11-3 SIGTERM, 9-10
run-time system, 1-6 sigvector(2), 11-66, 11-67

SIGVTALRM, 9-13, 11-67, 11-69
S size of record, 11-13
scalar types slow HP-UX routines, 11-67

Boolean types, 11-7, 11-36, 11-54 stack, 11-18, 11-22, 11-24
calling FORTRAN, 11-32 STANDARD, 3-4, 3-5, 3-7, 3-8, 3-10,
calling Pascal, 11-54 3-12, 3-14, 3-16
character types, 11-7 STANDARD-INPUT, 8-12
enumeration types, 11-6, 11-54 STANDARD-OUTPUT, 8-12
FORTRAN, 11-33 stderr, 8-12, 11-70
general considerations, 11-5 stdin, 8-12, 11-70
integer types, 11-6, 11-33, 11-52 stdout, 8-12, 11-70
Pascal, 11-52 STORAGE-ERROR, 3-13
real types, 11-8, 11-39. 11-55 STORAGE-UNIT

Index-9

pragma, 1-18 file, 8-10
record representation clause, 4-37 line, 8-10

STRING, 3-13 page, 8-10
string types representation, 8-30

Pascal, 11-58 text files, 8-30
passing to external subprograms, TEXTIO files, 8-10

11-11, 11-44 text processing tools, 1-10
scalar types, 11-46 time slicing, 11-67
special case of arrays, 11-25 type conversions,unchecked, 7-I

subprograms type representation, 4-1
predefined, 8-10

SUPPRESS, 1-1, 1-15 U

SUSPENDADATASKING, 11-69 UNCHECKED-CONVERSION
symbolic links, 8-16 access types, 4-23
SYSTEM, 3-1, 3-3, 11-33 enumeration types, 4-3
system dependencies, 8-17 interfacing with external data
SYSTEM-NAME, 1-18 structures, 4-23

limitations, 7-1
T UNCHECKEDDEALLOCATION,
tapes, 8-12 8-13
task unchecked type conversions, 7-1

management, 9-1, 9-8 unconstrained record types, 7-1
minimum size of stack, 4-28 unconstrained strings, 11-25
rescheduling, 11-67 underlying object, 11-56
scheduling, 11-67 universal-fixed, 3-7
time slice amount, 11-67 universal-integer, 3-5

TASKING-ERROR, 3-13 universal types, 3-5
task types USE-ERROR, 8-3, 8-8, 8-20, 8-25

alignment, 4-28 user-written applications, 10-5
as function results, 11-13
external subprograms, 11-2 V
general considerations, 11-13 VAR, 11-56, 11-62
internal representation, 4-26 'VARIANT-INDEX, 4-45
minimum size, 4-28 VARIANT-INDEX, 2-1
passing to external subprograms, variant index, 11-13

11-13
terminal input, 8-29 W
terminator WORLD, 8-21

character, 11-25

Index-lO

